
INTRODUCTION

‘Work’, ‘Energy’ and ‘Power’ are the terms which we frequently use in
everyday language.  Woman carrying water from a well to her house is
said to be working. In a drought affected region she may be required to
carry it over large distances. If she can do so, she is said to have a large
stamina or energy. Energy is thus the capacity to do work. The term power
is usually associated with speed. In karate, a powerful punch is one delivered
at great speed. This shade of meaning is close to the meaning of the word
‘power’ used in physics. We shall find that there is at best a loose correlation
between the physical definitions and the physiological pictures these terms
generate in our minds. The aim of this chapter is to develop an understanding
of these three physical quantities.

Before we proceed to this task, we need to develop a mathematical
prerequisite, namely the scalar product of two vectors.

SCALAR PRODUCT (DOT PRODUCT)

The scalar product or dot product of any two vectors A and B, denoted
as A.B (read A dot B) is defined as         

B

A

B cosq

q

A.B = A B cos 
r r

q

Where q is the angle between the two
vectors Each vector, A and B, has a
direction but their scalar product does
not have a direction.

NOTIONS OF WORK AND KINETIC ENERGY

The Work-Energy Theorem

The following relation for rectilinear motion under constant acceleration a
has been encountered in Chapter Motion.

v2– u2 = 2as                                                             ...(i)

Where u and v are the initial and final speeds and s the distance traversed.

Multiplying both sides by m/2, we have

2 2 2 21 1 1 1
mv mu m(v u ) m(2as) ma s

2 2 2 2
                     ...(ii)

Where the last step follows from Newton’s Second Law.
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The above equation (ii) provides a motivation for the definitions of work and kinetic energy. A force
on the body does work over a certain displacement.

It is also a special case of the work-energy (WE) theorem: f iK K W   = F.S.

The change in kinetic energy of a particle is equal to the work done on it by the net force.

For translatory motion : Work done by all the external forces acting on a body is equal to change in its
kinetic energy of translation.

Work done by all the external forces = 
1 2

2 21 1
W Changein K.E. mv mv K.E

2 2
= = - = D

For rotational motion : Work done by all the external torque acting on a rigid body is equal to change

in its rotational kinetic energy. Work done by all the external torque = 2 2
1 2

1 1

2 2
  I I

Note : In simple words K = K
f
 – K

i
 = W in the work energy theorem if only energy changed is kinetic

energy.

WORK

 Whenever a force acting on a body displaces it, work is said to be done by the force.

 Work done by a force is equal to scalar product of force applied and displacement of the body.

Force 
Constant

Variable force

DEFINITION

The work done by the force is defined to be the product of component of the force in the direction of
the displacement and the magnitude of this displacement. Thus

 W F cos d F, d q 
rr

Work done by a constant force

If the direction and magnitude of a force applying on a body is constant, the force is said to be constant.
Work done by a constant force,

W = Force × component of displacement along force = displacement × component of force along
displacement.

If a 

F  force is acting on a body at an angle q to the horizontal and the displacement d

r
 is along the

horizontal, the work done will, be

W = (F cos q) d

= F ( d cos q)

In vector from,  W F.d=
r r

q Fcosq

F

d



If x y z
ˆ ˆ ˆF iF jF kF



    and ˆ ˆ ˆd i x jy k z= + +
r

, the work done will be, W  = F
x
 x + F

y 
y + F

z
 z

Note : The force of gravity is the example of constant force; hence work done by it is the example of
work done by a constant force.

UNIT AND SYMBOL

Alternative Units of Work/Energy in J

1 erg = 10-7 J

1 Electron volt (eV) = 1.6x10-19 J

1 calorie 4.186 J

1 Kilowatt hour (kWh) = 3.6x106 J

Example :

A cyclist comes to a skidding stop in 20 m. During this process, the force on the cycle due to the road
is 500 N and is directly opposed to the motion. (A) How much work does the road do on the cycle?

Solution :

Work done on the cycle by the road is the work done by the stopping (frictional) force on the cycle
due to the road.

(A) The stopping force and the displacement make an angle of 1800 ( rad) with each other.

Thus, work done by the road,

W = F.d cosq

     = 500 × 20 × cos 

     = –10000 J

It is the negative work that brings the cycle to a halt in accordance with WE theorem.

Nature of Work

Although work done is a scalar quantity, its value may be positive, negative or even zero.

Positive work: - When Q is obtuse (<900), cos q is positive. Hence work done is positive.

As W F.d=
r r

=F d cos q

When q  is acute (<90º) cos q is positive. Hence work done is positive.

q
q (<90  )0

F
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F
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 s  
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Example :

(i) When a body falls freely under the action of gravity q = 0º, cos q = + 1, therefore work done by gravity
on a body, falling freely is positive.

Negative Work: - When q is obtuse (>900), cos q is negative. Hence work done is negative.

When q is obtuse (>90º), cos q is negative. Hence work done is coregative

 

F

>900

 

s  

gF  

(ii) When a body is thrown up, its motion is opposed by gravity. The angle q between the gravitational

force 

F  and displacement d

r
 is 180º. As cos  q = – 1, therefore, work done by gravity is nega-

tive.

(iii) When a body is moved over a rough horizontal surface, the motion is opposed by the force of friction.
Hence work done by frictional force in negative. Note that work done by the applied force is not
negative

(iv) When a positive charge is moved closer to another positive charge, work done by electrostatic force of
repulsion between the charges is negative.

Zero Work: - When force applied F or the displacement s or both are zero, work done W= F.d cos
q is zero. Again, when angle q  between F and d is 900. Therefore, work done is zero.

=900

F

S         

 

gF  

s

Example :

(i) When we fail to move a heavy stone, however
hard we may try, work done by us is zero,

d
r

 = 0

 

0s

F  

(ii) When a collie carrying some load on his head moves on horizontal platform, q = 90º. Therefore,
workdone by the collie is zero. This is because q = 90º



(iii) Tension in the string of simple pendulum is always perpendicular to displacement of the bob. There-
fore, work done by tension is always zero.

Note : Another way of expressing negative or positive work is that when energy is transferred to the
object work done is positive and when energy is transferred from object the work done is negative
and hence the work which is a transfer of energy has same dimensions as energy.

SOLVED EXAMPLE

Example 1. A body of mass 5 kg is placed at the origin, and can move only on the x-axis. A force of 10
N is acting on it in a direction making an angle of o60 with the x-axis and displaces it along
the x-axis by 4 metres. The work done by the force is

(A) 2.5 J (B) 7.25 J

(C) 40 J (D) 20 J

Solution : (D)

Work done F.s Fscos 10 4 cos60 20J  q     
 

Example 2. A force ˆ ˆF (5i 3j)N   is applied over a particle which displaces it from its origin to the

point ˆ ˆr (2i 1j)   metres. The work done on the particle is

(A) –7 J (B) +13 J

(C) +7 J (D) +11 J

Solution : (C)

Work done ˆ ˆ ˆ ˆF.r (5i 3j).(2i j) 10 3 7J       
 

Example 3. A horizontal force of 5 N is required to maintain a velocity of 2 m/s for a block of 10 kg
mass sliding over a rough surface. The work done by this force in one minute is

(A) 600 J (B) 60 J

(C) 6 J (D) 6000 J

Solution : (A)

Work done = Force  displacement = F  s = F  v  t = 5  2  60 = 600 J.

EXERCISE

 1. A box of mass 1 kg is pulled on a horizontal plane of length 1 m by a force of 8 N then it is
raised vertically to a height of 2m, the net work done is

(A) 28 J (B) 8 J

(C) 18 J  (D) None of above

2. A 10 kg satellite completes one revolution around the earth at a height of 100 km in 108
minutes. The work done by the gravitational force of earth will be



(A) J10100108  (B)
108 10

J
100



(C)
100 10

J
108


(D) Zero

ENERGY

The energy of a body is defined as the capacity of doing work. It is measured by the total amount of
workthat a body can do.

Energy is a scalar quantity

Unit : Its unit is same as that of work or torque.

In MKS : Joule, watt sec

In CGS : Erg

Note : 1 eV = 1.6 × 10–19 joule

1 KWh = 36 × 105 joule

107 erg = 1 joule

Dimension  [M1L2T–2]

According to Einstein’s mass energy equivalence principle mass and energy are inter convertible i.e.
they can be changed into each other

Energy equivalent of mass m is, E = mc2

Where, m : mass of the particle

c : velocity of light

E : equivalent energy corresponding to mass m.

In mechanics we are concerned with mechanical energy only which is of two type

(A) kinetic energy (ii) potential energy

KINETIC ENERGY

The energy possessed by a body by virtue of its motion is called kinetic energy. Expression for K.E.:
Consider a body of mass m, initially at rest . Let a constant force (F) be acting on the body, due to which
it starts moving with acceleration a.

Then F = ma ...(i)

Let it acquires velocity v after travelling distance d, then v2 – u2 = 2ad, we have v2 = 2ad

2v
a

2d
Þ = ...(ii)

from (i)& (ii) we get 
2mv

F
2d

=

As 
2 2

2mv mv 1
W xd mv

2d 2 2
= = =



If a body of mass m is moving with velocity v, its kinetic energy

KE = 
1

2
mv2, for translatory motion

KE = 
1

2
 I2, for rotational motion

Kinetic energy is always positive

If linear momentum of body is p, 
2 2 2 2

21 m v (mv) p
K.E. mv

2 2m 2m 2m
= = = =  - for translatory motion

If angular momentum of body is J, KE  = 
2

2J 1
= Iω

2I 2
 - for rotational motion

p or J E    p : momentum E : kinetic energy

P

E

1/P

E

P
2

E

The kinetic energy of a moving body is measured by the amount of work which has been done in
bringing the body from the rest position to its present moving position or

The kinetic energy of a moving body is measured by the amount of work which the body can do against
the external forces before it comes to rest.

If a body performs translatory and rotational motion simultaneously, its total kinetic energy =

2 21 1
mv + Iω

2 2

DEFINITION OF ELECTRON- VOLT

The energy acquired by an electron when it  passes through a potential difference of 1 volt is called
electron-volt.

1 eV = 1.6 × 10–19C × 1 volt

SOLVED EXAMPLE

Example 1. Consider the following two statements

1. Linear momentum of a system of particles is zero

2. Kinetic energy of a system of particles is zero

Then

(A) 1 implies 2 and 2 implies 1 (B) 1 does not imply 2 and 2 does not imply 1

(C) 1 implies 2 but 2 does not imply 1 (D) 1 does not imply 2 but 2 implies 1



Solution : (D)

Momentum is a vector quantity whereas kinetic energy is a scalar quantity. If the kinetic
energy of a system is zero then linear momentum definitely will be zero but if the
momentum of a system is zero then kinetic energy may or may not be zero.

Example 2. A running man has half the kinetic energy of that of a boy of half of his mass. The man
speeds up by 1 m/s so as to have same K.E. as that of boy. The original speed of the man
will be

(A) 2m / s (B) ( 2 1)m / s

(C)
1

m / s
( 2 1)

(D)
1

m / s
2

Solution : (C)

Let m = mass of the boy, M = mass of the man, v = velocity of the boy and V = velocity of
the man

Initial kinetic energy of man 
2 2 21 1 1 1 1 M M

MV mv v m
2 2 2 2 2 2 2

                    


2
2 v v

V V
4 2

   ...(i)

When the man speeds up by 1 m/s ,  
2

2 2 2 21 1 1 M v
M(V 1) mv v (V 1)

2 2 2 2 2
       
 

 
v

V 1
2

  ...(ii)

From (i) and (ii)  we get speed of the man 
1

V m / s
2 1

    
.

Example 3 A body of mass 10 kg at rest is acted upon simultaneously by two forces 4N and 3N at
right angles to each other. The kinetic energy of the body at the end of 10 sec is

(A) 100 J (B) 300 J

(C) 50 J (D) 125 J

Solution : (D)

As the forces are working at right angle to each other therefore net force on the body

2 2F 4 3 5N  

Kinetic energy of the body = work done = F  s

22

2

1

2

1
t

m

F
FtaF 






 125)10(

10

5

2

1
5 2 






 J.



Example 4. If the momentum of a body increases by 0.01%, its kinetic energy will increase by

(A) 0.01% (B) 0.02 %

(C) 0.04 % (D) 0.08 %

Solution : (B)

Kinetic energy 
2

2p
E E p

2m
  

Percentage increase in kinetic energy = 2(% increase in momentum)

[If change is very small]
= 2(0.01%) = 0.02%.

EXERCISE

1. If the momentum of a body is increased by 100 %, then the percentage increase in the
kinetic energy is

(A) 150 % (B) 200 %

(C) 225 % (D) 300 %

2. A body of mass 5 kg is moving with a momentum of 10 kg-m/s. A force of 0.2 N acts on it
in the direction of motion of the body for 10 seconds. The increase in its kinetic energy is

(A) 2.8 J (B) 3.2 J

(C) 3.8 J (D) 4.4 J

 3. Two masses of 1g and 9g are moving with equal kinetic energies. The ratio of the
magnitudes of their respective linear momenta is

(A) 1 : 9 (B) 9 : 1

(C) 1 : 3 (D) 3 : 1

 4. A body of mass 2 kg is thrown upward with an energy 490 J. The height at which its
kinetic energy would become half of its initial kinetic energy will be-

(A) 35 m (B) 25 m

(C) 12.5 m (D) 10 m

 5. A 300 g mass has a velocity of m/sec at a certain instant. What is its kinetic energy

(A) 1.35 J (B) 2.4 J

(C) 3.75 J (D) 7.35 J

WORK DONE BY A  VARIABLE FORCE

A constant force is rare. It is the variable force, which is more commonly encountered. Given fig.  is
a plot of a varying force in one dimension. If the displacement  x is small, we can take the force F
(x) as approximately constant and the work done is then

W =F (x)  x



This is illustrated in Fig. Adding successive rectangular areas in Fig. 6.3(A) we get the total work done
as

f

t

x

x

W F(x). x 

If the force applying on a body is changing in its direction or magnitude or both, the force is said to be
variable suppose a constant force causes displacement in a body from position P

1
 to position P

2
. To

calculate the work done by the force the path from P
1
 to P

2
 can be divided into infinitesimal element,

each element is so small that during  displacement of body through it, the force is supposed to be

constant. It d r


 be small displacement of body and F


 be the force applying on the body, the work done

by force is dW = 
!

F.d r


......

(i) The total work done in displacing body from P
1
 to P

2
 is given

by,
2

1

p

p
dW F.dr 

  P2

P1

F 
co

s 

F

dr

or W = 
2

1

p

p
F.dr
 

If 
1r


 and 

2r


 be the position vectors of the points P
1
 and P

2
 respectively, the total work done will be -

W = 
2

1

r

r
F.dr



Note : When we consider a block attached to a spring, the force on the block is k times the elonga-
tion of the spring, where k is spring constant. As the elongation changes with the motion of the block,
therefore the force is variable. This is an example of work done by variable force.

Work-Energy Theorem for Variable Force

We know, kinetic energy, 
21

K.E. mv
2



Differentiating both sides w.r.t ‘t’, we get

2d(K.E.) d 1 dv
mv mv

dt dt 2 dt
   
 

But
dv d(K.E.)

a mav
dt dt

  



or
d(K.E.)

Fv
dt

 ( F = ma, Newton’s second law of motion.)

Since
dx d(K.E.) dx

v F or d(K.E.) Fdx
dt dt dt

   ...(1)

When x = x
i
, K.E. = (K.E.)

i
 and when x = x

f
, K.E. = (K.E.)

f
.

Integrating equation (1) between these limits, we get

f f f

f

i

i i i

(K.E.) x x
(K.E.)
(K.E.) f i

(K.E.) x x

d(K.E.) Fdx or Fdx [K.E.] (K.E.) (K.E.)     

= 
2 21 1

mv mu
2 2



But
f

i

x

x

Fdx  Work done (W) by the variable force.

 2 21 1
W mv mu change in K.E.

2 2
  

This is work-energy theorem.

Discussion of Work-Energy Theorem

(i) Work done by a force is zero, if there is no change in the speed of a particle or a body.

Explanation: 2 21 1
W mv mu

2 2
 

If  u = v, we get

Example :

When a particle moves in a circular path with constant speed, then work done by the centripetal force is
zero. In this case, there is no change in the kinetic energy of the particle and hence according to work-
energy theorem, work done is zero.

(ii) Work done by a force is negative, if there is decrease in the kinetic energy of a particle or a body.

Solution : 2 21 1
W mv mu

2 2
 

Since
2 21 1

mv mu
2 2



 W = negative

Example :

When a particle is projected upward, then the work done by the gravitational force is negative. In this
case, as the particle moves up, its speed decreases and hence consequently the kinetic energy of the
particle also decreases.



(iii) Worked done by the force is positive, if there is increase in the velocity and hence kinetic energy
of the particle.

Explanation : 
2 21 1

W mv mu
2 2

 

Since
2 21 1

mv mu
2 2



 W = Positive.

Example :

When a particle or an object is dropped from the top of a building, then the work done by the gravitational
force is positive. As the particle descends, its speed increases and hence K.E. of the particle also
increases. This implies that the work done by the gravitational force is positive.

SOLVED EXAMPLE

Example 1. A force F = (10 + 0.50x) acts on a particle in X direction, where F is in Newton and X in
metre. Find the work done by this force during a displacement from X = 0 to X = 5 m.

Solution: Here, F = (10 + 0.50x)

Small amount of work done in moving the particle through a small distance dx is

dW F.dx (10 0.50x)dx  


Total work done,

x = 5

x 5

x 0
W (10 0.50x)dx




 

52

0

x
W 10x 0.5

2

 
  

 
 

20.5
10(5 0) (5 0)

2
     = 50 + 6.25 = 56.25 Joule.

Example  2. A particle moves along some trajectory X-Y plane from point P whose position vector is

1r i 2 j m
     

 
 to point Q, whose position vector is 2r 2i 3j m.

     
 

 During motion it

experienced the action of certain forces one of which is F 3 i 4 j N.
    

 
 Find the work

performed by  F


Solution: Since  F


 is constant, work done by it is simply given by

2 1
W F.S F. r r

        
 

 3 i 4 j . i 5 j
           

   
 3 20 17 Joules   



Example 3. A body of mass m slides down the smooth surface of a hill of height h.  Find the velocity of the
block at the bottom of the hill (See figure)

mg

h

N

Solution. There are only two forces namely  N and mg that act on the body.  The work done by N


 is

zero since it is always perpendicular to velocity  v,


  i.e.

NW N.ds N.v dt 0
   

   
The work done by gravity = mgh.
Let the velocity of the block at the bottom be v.  From work - energy theorem, we have

21
mv 0 mgh 0

2
    v 2gh. 

Example 4 A small block of mass m slides down an inclined plane at an angle    to the horizontal. Find
the distance that it will move on the horizontal plane after sliding down the incline. T h e
height of  the inclined plane is h and the coefficient of kinetic friction over both surfaces is  

k

     L 

mP

h

Q R k

Solution. Let us choose P and R as initial and final positions. The velocity of block at these points is zero.
Thus,

kE 0 

gravityW mgh , friction P Q Q RW W W  

wfr k k

h
mgcos mgL

sin
     


, Normal reactionW 0

Using work theory theorem, we find

 K.E. = Work by all

 K.E. = w
mg

 + W
N
 + W

fr

0 = mgh + 0 – 
k 
mg cos

h

sin
 


 – 

k 
mgL

k

1
L h cot

 
     



Example 5. An ideal massless spring with spring constant k is placed at the bottom of a frictionless inclined

plane which makes an angle q  with the horizontal (See fig.).  A block of mass M  is released
from rest at the top of the incline.  It moves a distance S along the incline before it touches the
spring.  Find (A) the maximum compression of the spring and (B) the maximum speed of the
block.

q

  k 

S
 m

Xm

Solution. (A) Let the maximum compression of  the spring be  mX  at this position, the block will

come to instantaneous rest.

 2 2 2
spring f i m

1 1
W k x x k x

2 2
     gravity mW mg S x sin  q

The initial and final velocity of  the block is zero.

Thus  kE 0 

From work - energy theorem, we have   2
m m

1
0 k x mg S x sin

2
    q

2
m m

1
k x mgsin x mgSsin 0

2
  q  q 

2 2 2

m

mgsin m g sin 2kmgSsin
x

K

q  q  q
 

(The other value of  mX  is not possible)

(B) The velocity of the block will continue to increase as long as its acceleration a is down
the incline.  From Newton’s second law, we have

makxsinmg q

m

kxsinmg
a

q


It becomes zero, when 0kxsinmg 0 q

K

sinmg
x0

q




Let the velocity of the block be  mV  at this position.  From work - energy theorem,we have

 2 2
m o 0

1 1
mv 0 mg S x sin kx

2 2
   q   2

mgsin
mgSsin

2K

q
 q 

 
m

2kS mgsin
V mgsin

K

 q
  q

Example 6. A 1,00,000 kg engine is moving up a slope of gradient 5o at a speed of 100 meter / hour.
The coefficient of friction between the engine and rails is 0.1.  If the engine has an efficiency
of  4% for converting heat into work, find the amount of coal the engine has to burn up in one
hour (Burning of 1 kg of coal yields 50,000 joule)

Solution Work done by friction in one hour, 1w ( mg cos )   q   mg cos v  q

Work done by gravity in one hour,  2w mgvsin  q

Work done by engine,  3w ?

Since the speed of the engine is constant, work energy theorem yields

1 2 30 w w w   3 1 2w w w   

mg[sin cos ]v q  q

5 o o10 9.8[sin5 0.1cos5 ] 100   

71.83 10 Joule 

Let H be the amount of heat needed.  Then

74
H 1.83 10 J

100
  7H 45.75 10 J  

The amount of coal need in one hour

7
3

4

45.75 10
9.15 10 kg

5 10


  



Example 7 In the figure shown below,  AC, DG and GE are fixed inclined planes.  BC = EF  =  x and
AB = DE = y.  A small block of mass M is released from the point A.  It slides down AC and
reaches C with a speed Vc.  The same block is released from rest from point D. It slides down
DGF and reaches the point F with speed V

F
.  The coefficient of kinetic friction between the

block and both surfaces AC and GDF is  Calculate (A) VV
c
 and (B) V

F
.

 

 x 

A

 B C

  y

         

 y 

D

 E

G

  I
 F

 x

H



Solution. (A) Let angle qABC , then

y x
AC

sin cos
 

q q

Work done by force of friction mg cos AC  q 

Work done by gravity = mg y

From work - energy theorem,

mgyACcosmgK q

2
c

1
mV 0 mg(y x)

2
    

 cV 2g y x   

(B) Let angle GFI =   and angle DGH =  , then

HG EI
DG

cos cos
 

 

FI
GF

cos




Work done by friction along with path  D G F 

mg cos DG mg cos GF      

mg EI mg IF   

mgx 

Work done by gravity = mg DE = mg y

From work - energy theorem, we get

mgymgxkE 

 xymg0mV
2

1 2
F 

 xyg2VF 

Example 8. A man pulls a 5 kg block 20 meters along a horizontal surface at a constant speed with force

directed o45  above the horizontal.  If the coefficient of kinetic friction is 0.2, how much work
does the man do on the block?



Solution. The f.b.d. of the block is shown below.

As the block moves with constant velocity, force on it must balance.  Hence

oN mg Fsin 45 0   ...(1)

o45

N

oFcos45 N 0   ...(2)

From equation (1) 
F

N mg
2

 

Putting this value in  equation  (2), we get

F F
mg

2 2

    
 

2 mg
F

1.2


   Newton55.11

Work done by the man = d45cosF o 

11.55
20 162.32J

2
  

Example 9. Two blocks of masses m
1
 and m

2
 are connected by spring of spring constant K.  Initially the

spring is at its natural length.  The coefficient of friction between the bars and the surface is
 . What minimum constant force has to be applied in the horizontal direction to the block of
mass m, in order to shift the other block?

Solution. Block m
2
 will move when spring pulls it to right by a force equal to force of friction

i.e. 1 2m g kx 

2m 1m
F

2m g
x

K


 

Therefore, block m
1
 must move a distance equal to  2m g

K


 before it comes to rest.

Applying work - energy theorem to block m
1
, we have

Change in KE = W
F
 + W

friction
 + W

spring

2

2 2 2
1

m g m g m g1
0 F m g K

K 2k 2 K

         
 

2
1

m
F m g

2
     
 



EXERCISE

1. A position dependent force 2F 7 2x 3x


    acts on a small body of mass 2kg and displaces
it from x = 0 to x = 5 m. The work done in joule will be

2. For the force displacement diagram shown in adjoining diagram the work done by the force in
displacing the body from x = 1 cm to  x = 5 cm is -

1 2 3 4 5 6 7 8

20
10
0

-10
-20

F
(In dyne) x-(cm)

3. A uniform chain of mass M and length L is lying on a frictionless table in such a way that its 1/
3 part is hanging vertically down. The work done in pulling the chain up the table is

4. The work done in pulling a body of mass 5 kg along an inclined plane (angle 60º) with coeffi-
cient of friction 0.2 through 2m, will be

5. A force 2F (7 2x 3x )N  


 is applied on a 2 kg mass which displaces it from x = 0 to x = 5 m.

What is the work done in joule ?

 6.

DA B C

As 0.5 kg body slides from the point A (see fig) on a horizontal track with an initial speed
of 3m/s towards a massless horizontal spring of length 1m and force constant 2N/m.  The part
AB of the track is frictionless and part BC has coefficient of static and dynamic friction 0.22
and 0.2 respectively.  Find the total distance through which the block moves before it comes to

rest completely   2g 10m / s  if  AB 2m   and BD 2.14m

7. A bullet fired with a velocity v
o
 penetrates a plank and looses one third of its velocity.  It then

strikes another plank which it just penetrates through.  Find the ratio of the thickness of the
planks supposing average resistance to the penetration is same in both the planks.

8. A position dependent force 2F (7 2x 3x )N  


 acts on a small abject of mass 2 kg to

displace it from x = 0 to x = 5m. The work done in joule is

(A) 70 J (B) 270 J

(C) 35 J (D) 135 J

9. A particle moves under the effect of a force F = Cx from x = 0 to x = x
1
. The work done

in the process is

(A) 2
1Cx (B)

2
1

1
Cx

2

(C)
1Cx (D) Zero



10. The vessels A and B of equal volume and weight are immersed in water to a depth h. The
vessel A has an opening at the bottom through which water can enter. If the work done in

immersing A and B are AW and BW  respectively, then

(A) W
A
 = W

B
(B) W

A
 < W

B

(C) W
A
 > W

B
(D) W

A
 > = < W

B

11. Work done in time t on a body of mass m which is accelerated from rest to a speed v in

time 1t  as a function of time t is given by

(A)
2

12

1
t

t

v
m (B)

2

1

t
t

v
m

(C)
2

2

12

1
t

t

mv








(D)

2
2
1

2

2

1
t

t

v
m

POTENTIAL ENERGY

Definition: - The potential energy of a body is defined as the energy possessed by the body by
virtue of its position or configuration in some field. It is of two type -

(A) Gravitational potential Energy (B) Elastic Potential Energy

OR

 The energy which a  body has by virtue of its position or configuration in a conservative force field

 Potential energy is a relative quantity.

 Potential energy is defined only for conservative force field.

 Potential energy of a body at any position in a conservation force field is defined as the workdone
by an external agent against the action of conservation force in order to shift it from reference point.

 Relationship between conservative force field and potential energy (U) F


U grad (U)    = –

U U Uˆ ˆ ˆi j k
x y z

  
 

  

Example. (i) U = 3x2     ˆF 6xi


  (ii) U = 2x2y + 3y2x + xz2

 2 2 2F (4xy 3y z ) i (2x 6xy) j (2xz) k


      
  

 If force varies only with one dimension then F = –
dU

dx
  or   

2

1

x

x

U Fdx

 Potential energy may be positive or negative

(i) Potential energy is positive, if force field is repulsive in nature

(ii) Potential energy is negative, if force field is attractive in nature



Attraction forces

Repulsion forces

rU-ve
U+ve

 If r  (separation between body and force centre), U , force field is attractive or vice-versa.

 If r , U , force field is repulsive in nature.

Potential energy curve

A graph plotted between the PE of a particle and its displacement from the centre of force field is
called PE curve

Using graph, we can predict the rate of motion of a particle at various positions.

Force on the particle is F
(x)

 = – 
dU

dx

Case : I On increasing x, if U increase, force is in (–)ve x-direction  i.e. attraction force.

Case : II On increasing x, if U decreases, force is in (+)ve x-direction i.e. repulsion force.

Different positions of a particle

Position of equilibrium

If net force acting on a body is zero, it is said to be in equilibrium for equilibrium

dU

dx
 = 0 Points P, Q, R and S are the states of equilibrium positions.

Types of equilibrium : If net force acting on a particle is zero, it is said to be in equilibrium.

For equilibrium 0
dx

dU
, but the equilibrium of particle can be of three types :

Stable equilibrium:When a particle is displaced slightly from a position, then a force acting on it
brings it back to the initial position, it is said to be in stable equilibrium position.

Potential energy is minimum

dU
F 0

dx
  

2

2

d U
positive

dx




i.e. rate of change of 
dU

dx
 is positive.

Example : A marble placed at the bottom of a hemispherical bowl.

 

Unstable equilibrium: When a particle is displaced slightly from a position, then a force acting on
it tries to displace the particle further away from the equilibrium position, it is said to be in unstable
equilibrium.

Potential energy is maximum

dU
F 0

dx
  

2

2

d U
negative

dx
      i.e. rate of change of 

dU

dx
 is negative

Example : A marble balanced on top of a hemispherical bowl

 

 

Neutral:When a particle is slightly displaced from a position then it does not experience any force acting
on it and continues to be in equilibrium in the displaced position, it is said to be in neutral equilibrium.

Potential energy is constant.

dU
F 0

dx
  

2

2

d U
0

dx
     i.e. rate of change of 

dU

dx
 is zero

Example : A marble placed on horizontal table.

 

Work Done in Conservative and Non-Conservative Field .

(1) In conservative field work done by the force (line integral of the force i.e. F.dl


) is
independent of the path followed between any two points.



A B A B A B
Path I Path II Path III

W W W   

A B 
I 

II 

III 

Path I Path II Path III

F.dl F.dl F.dl   
    

(2) In conservative field work done by the force (line integral of the force i.e. F.dl


) over a closed

path/loop is zero.

A B B AW W 0  

or F.d l 0
A B 

Conservative force : The forces of these type of fields are known as conservative forces.

Example

Electrostatic forces, gravitational forces, elastic forces, magnetic forces etc and all the central
forces are conservative in nature.

If a body of mass m is lifted to height h from the ground level by different path as shown in the figure
 B B B B 

A A A A 

I II III IV 

q 

h l 

Work done through different paths

IW F.s mg h mgh   

II

h
W F.s mg sin l mg sin mgh

sin
  q   q  

q

III 1 2 3 4W mgh 0 mgh 0 mgh 0 mgh       1 2 3 4mg(h h h h ) mgh    

IVW F.ds mgh 
 

It is clear that I II III IVW W W W mgh    .

Further if the body is brought back to its initial position A, similar amount of work (energy) is
released from the system it means W

AB
 = mgh

and W
BA

 = mgh.

Hence the net work done against gravity over a round strip is zero.

W
Net

 = W
AB

 + W
BA

        = mgh + (–mgh) = 0

i.e. the gravitational force is conservative in nature. F 

R  
s



Non-conservative forces : A force is said to be non-conservative
if work done by or against the force in moving a body from one
position to another, depends on the path followed between these
two positions and for complete cycle this work done can never be a
zero.

Example:  Frictional force, Viscous force, Air drag etc.

If a body is moved from position A to another position B on a rough table, work done against
frictional force shall depends on the length of the path between A and B and not only on the position
A and B.

W
AB

 = mgs

Further if the body is brought back to its initial position A, work has to be done against the frictional
force, which always opposes the motion. Hence the net work done against the friction over a round
trip is not zero.

W
BA

 = –mgs

 W
Net

 = W
AB

 + W
BA

W
Net

 = mgs – mgs = –(2mg)s

i.e. the friction is a non-conservative force.

SOLVED EXAMPLE

Example 1. If W
1
, W

2
 and W

3
 represent the work done in moving a particle from A to B along three

different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass
m, find the correct relation

B

A

1
2

3

m

(A) W
1
 > W

2
 > W

3
(B) W

1
 = W

2
 = W

3

(C) W
1
 < W

2
 < W

3
(D) W

2
 > W

1
 > W

3

Solution : (B)

As gravitational field is conservative in nature. So work done in moving a particle from A to
B does not depends upon the path followed by the body. It always remains same.

Example 2. A particle of mass 0.01 kg travels along a curve with velocity given by ki ˆ16ˆ4  ms-1. After

some time, its velocity becomes 1ˆ20ˆ8  msji  due to the action of a conservative force.

The work done on particle during this interval of time is

(A) 0.32 J (B) 6.9 J

(C) 9.6 J (D) 0.96 J

Solution : (D)

2 2 2 2
1 2v 4 16 272 and v 8 20 464     

Work done = Increase in kinetic energy 
2 2
2 1

1 1
m[v v ] 0.01[464 272] 0.96 J

2 2
      .



EXERCISE

1. A particle moves under the effect of a force F Cx from x = 0 to x = x
1
. The work done in the

process is

(A) 2
1Cx (B) 2

1

1
Cx

2
(C) Cx

1
(D) Zero

2. The potential energy of a certain spirng when stretched through a distance ‘S’ is 10 joule. The
amount of work (in joule) that must be done on this spring to stretch it through an additional
distance ‘S’will be

(A) 30 (B) 40

(C) 10 (D) 20

3. The work done by a force 3ˆF ( 6x i) 


N, in displacing a particle from x = 4m to x = –2 m is

(A) 360 J (B) 240 J

(C) –240 J (D) –360 J

4. The block of mass M moving on the frictionless horizontal surface collides with the spring of
spring constant K and compresses it by length L. The maximum momentum of the block after
collision is

 

M 

(A) Zero (B)
2ML

K

(C) MK L (D)
2KL

2M

5. What is the velocity of the bob of a simple pendulum at its kilowatt-hour of energy will it deliver
to the body as it is digested.

 

(A) 0.6 m/s (B) 1.4 m/s

(C) 1.8 m/s (D) 2.2 m/s

6. A running man has half the kinetic energy of that of a boy of half of his mass. The man speeds up
by 1m/s so as to have same K.E. as that of the boy. The original speed of the man will be

(A) 2 m / s (B) ( 2 1)m / s

(C)
1

m / s
( 2 1) (D)

1
m / s

2



7. A particle of mass m at rest is acted upon by a force F for a time t. Its kinetic energy after an
interval t is

(A)
2 2F t
m

(C)
2 2F t

2m

(D)
2 2F t

3m
(E)

Ft
2m

8. A vertical spring with force constant K is fixed on a table. A ball of mass m at a height h above
the free upper end of the spring falls vertically on the spring so that the spring is compressed by a
distance d. The net work done in the procees is

 
 

 

 

(A) 21
Kd

2
mg(h d)  (B) 21

mg(h d) Kd
2

 

(C) 21
mg(h d) Kd

2
  (D) 21

mg(h d) Kd
2

 

WORK DEPENDS ON FRAME OF REFERENCE

With change of frame of reference force does not change while displacement may change. So the
work done by a force will be different in different frames.

 

h 

Examples

(1) If a porter with a suitcase on his head moves up a staircase, work done by the upward lifting
force relative to him will be zero (as displacement relative to him is zero) while relative to a
person on the ground will be mgh.

(2)  If a person is pushing a box inside a moving train, the work done in the frame of train will F.s
 

while in the frame of earth will be 
0F.(s s )

    where 0s


 is the displacement of the train relative

to the ground. Different types of forces and their corresponding potential energy.



(A) ELASTIC POTENTIAL ENERGY

(1) Restoring force and spring constant : When a spring is stretched or compressed from its normal
position (x = 0) by a small distance x, then a restoring force is produced in the spring to bring it to the
normal position.

According to Hooke’s law this restoring force is proportional to the displacement x and its
direction is always opposite to the displacement.

i.e. F x 
                                              

m

m

F

F

Fext

Fext

– x

m

x = 0

+x

or F kx 
  ….(i)

where k is called spring constant.

If x = 1, F = k (Numerically)

or k = F

Hence spring constant is numerically equal to force required to produce unit displacement
(compression or extension) in the spring. If required force is more, then spring is said to be
more stiff and vice-versa.

Actually k is a measure of the stiffness/softness of the spring.

Dimension : As 
F

k
x

  
2

2[F ] [MLT ]
[k] [MT ]

[x] L




  

Units :  S.I. unit Newton/metre, C.G.S unit Dyne/cm.

Note :  Dimension of  force constant is similar to surface tension.

(2) Expression for elastic potential energy : When a spring is stretched or compressed from its
normal position (x = 0), work has to be done by external force against restoring force.

ext restoringF F kx 
  

Let the spring is further stretched through the distance dx, then work done

ext extdW F .dx F .dx cos0 kx dx [As cos 0 1]     


Therefore total work done to stretch the spring through a distance x from its mean position is given
by

x2x x 2

0 0
0

x 1
W dW kx dx k kx

2 2

 
    

 
 

This work done is stored as the potential energy of the stretched spring.

 Elastic potential energy 21
U kx

2


1
U Fx

2


F
As k

x
   

2F
U

2k


F
x

k
   

 Elastic potential energy 
2

21 1 F
U kx Fx

2 2 2k
  



Note :  If spring is stretched from initial position x
1
 to final position x

2
 then work done

= Increment in elastic potential energy 
2 2
2 1

1
k(x x )

2
 

(3) Energy graph for a spring : If the mass attached with spring performs simple harmonic
motion about its mean position then its potential energy at any position (x) can be given by

21
U kx

2
  ...(i)

m

x = 0

m

x = – a 

O 

m

x = + a 
A 

B 

E 

En
er

gy

x = +ax = 0x =– a

U 

K 

Position

O A B 

So for the extreme position

21
U ka

2
 [As x =  a for extreme]

This is maximum potential energy or the total energy of mass.

 Total energy 
21

E ka
2

 ...(ii)

[Because velocity of mass = 0 at extreme  
21

K mv 0
2

  ]

Now kinetic energy at any position 
2 21 1

K E U ka kx
2 2

   

1
K k(a x )

2
   ...(iii)

From the above formula we can check that

2
max

1
U ka

2
  [At extreme x =  a] and    U

min
 = 0  [At mean x = 0]

2
max

1
K ka

2
  [At mean x = 0] and    K

min
 = 0  [At extreme x =  a]

21
E ka

2
  = constant (at all positions)

It mean kinetic energy changes parabolically w.r.t. position but total energy remain always
constant irrespective to position of the mass

(B) ELECTROSTATIC POTENTIAL ENERGY

It is the energy associated with state of separation between charged particles that interact via
electric force. For two point charge q

1
 and q

2
, separated by distance r.

1 2

0

q q1
U .

4 r






While for a point charge q at a point in an electric field where the potential is V

U = qV

As charge can be positive or negative, electric potential energy can be positive or negative.

Intermolecular potential energy :

Reference point =  i.e. P.E = 0

U (r) = 12 6

a b

r r
  ,        F = – 7 6

dU 6b 2a / b
1

dr r r
   
 

(C) GRAVITATIONAL POTENTIAL ENERGY

It is the usual form of potential energy and is the energy associated with the state of separation
between two bodies that interact via gravitational force.

For two particles of masses m
1
 and m

2
 separated by a distance r

Gravitational potential energy 1 2Gm m
U

r
 

F12

m1 m1

F21

r

(1) If a body of mass m at height h relative to surface of earth then

Gravitational potential energy 
mgh

U
h

1
R




Where R = radius of earth, g = acceleration due to gravity at the surface of the earth.

(2) If h << R then above formula reduces to U = mgh.

(3) If V is the gravitational potential at a point, the potential energy of a particle of mass m at that
point will be

U = mV

(4) Energy height graph : When a body projected vertically upward from the ground level with
some initial velocity then it possesses  kinetic energy but its potential energy is zero.

 

 
Height

E
ne

rg
y

U

K

E

As the body moves upward its potential energy increases due to increase in height but kinetic
energy decreases (due to decrease in velocity). At maximum height its kinetic energy becomes
zero and potential energy maximum but through out the complete motion total energy remains
constant as shown in the figure.



SOLVED EXAMPLE

Example 1. A particle which is constrained to move along the x-axis, is subjected to a force in the same
direction which varies with the distance x of the particle from the origin as F = (–Kx + ax3).
Here k and a are positive constants. For , the functional from of the potential energy  of the
particle is

(A)

U(x)

x

(B)

U(x)

x

(C)

U(x)

x

(D)

 U(x) 

x 

Solution : (D)

dU
F

dx
   dU F.dx     

x 3

0
U ( kx ax )dx      

2 4kx ax
U

2 4
 

 We get  at x = 0 and 
2k

x
a



Also we get  negative for 
2k

x
a



From the given function we can see that F = 0 at x = 0 i.e. slope of U-x graph is zero at x = 0.

Example 2. The potential energy of a body is given by V = A–Bx2 (where x is the displacement). The
magnitude of force acting on the particle is

(A) Constant (B) Proportional to x

(C) Proportional to (D) Inversely proportional to x

Solution : (B)

2dU d
F (A Bx ) 2B

dx dx


              F  x

Example 3. A long spring is stretched by 2 cm, its potential energy is U. If the spring is stretched by 10
cm, the potential energy stored in it will be

(A) U / 25 (B) U / 5

(C) 5 U (D) 25 U

Solution : (D)

Elastic potential energy of a spring 2 21
U kx U x

2
  

So  

2 2

2 2 2
2

1 1

U x U 10cm
U 25U

U x U 2cm

          
  



Example 4. A spring of spring constant 5 × 103 N/m is stretched initially by 5 cm from the unstretched
position. Then the work required to stretch it further by another 5 cm is

(A) 6.25 N-m (B) 12.50 N-m

(C) 18.75 N-m (D) 25.00 N-m

Solution : (C)

Work done to stretch the spring from 1x  to 2x

2 2
2 1

1
W k(x x )

2
   = 

3 2 2 2 3 41 1
5 10 [(10 10 ) (5 10 ) ] 5 10 75 10 18.75 Nm

2 2
           

Example 5. A proton has a positive charge. If two protons are brought near to one another, the
potential energy of the system will

(A) Increase (B) Decrease

(C) Remain the same (D) Equal to the kinetic energy

Solution : (A)

As the force is repulsive in nature between two protons. Therefore potential energy of the
system increases.

Example 6. Two protons are situated at a distance of 100 fermi from each other. The potential energy
of this system will be in eV

(A) 1.44 (B) 1.44 × 103

(C) 1.44 × 102 (D) 1.44 × 104

Solution : (D)

9 19 2
151 2

15
0

15
4

19

q q1 9 10 (1.6 10 )
U 2.304 10 J

4 r 100 10

2.304 10
eV 1.44 10 eV

1.6 10










  
   

 


  



Example 7. The work done in pulling up a block of wood weighing 2kN for a length of 10 m on a
smooth plane inclined at an angle of o15 with the horizontal is (sin 15o = 0.259)

(A) 4.36 k J (B) 5.17 k J l h

q=150

(C) 8.91 k J (D) 9.82 k J

Solution : (B)

Work done = mg  h

= 2 × 103 × l sin q

= 2 × 103 × 10 × sin 15° = 5176 J = 5.17 kJ

Example 8. Two identical cylindrical vessels with their bases at same level each contain a liquid of
density d. The height of the liquid in one vessel is h

1
 and that in the other vessel is h

2
. The

area of either vases is A. The work done by gravity in equalizing the levels when the two
vessels are connected, is



(A) (h
1
 – h

2
)gd (B) (h

1
 – h

2
) gAd

(C)
2

1 2

1
(h h ) gAd

2
 (D)

2
1 2

1
(h h ) gAd

4


Solution : (D)

Potential energy of liquid column is given by 
2h h h 1

mg Vdg Ahdg Adgh
2 2 2 2

  

Initial potential energy 
2 2
1 2

1 1
Adgh Adgh

2 2
 

h h h1 h2

Final potential energy = 
2 2 21 1

Adgh Adh g Adgh
2 2

 

Work done by gravity = change in potential energy

2 2 2
1 2

22 2
1 2 1 2 1 2

2 2 2 2
21 2 1 2 1 2

1 2

1 1
W Adgh Adgh Adgh

2 2

h h h h h h
Adg Adg [As h ]

2 2 2 2

h h h h 2h h Adg
Adg (h h )

2 2 4 4

     

          
  

   
      

  

Example 9. If g is the acceleration due to gravity on the earth’s surface, the gain in the potential energy
of an abject of mass m raised from the surface of earth to a height equal to the radius of
the earth R, is

(A)
1

mgR
2

(B) 2mgR

(C) mgR (D)
1

mgR
4

Solution : (A)

Work done = gain in potential energy 
mgh mgR 1

mgR
1 h / R 1 R / R 2

  
 

        [As h = R

(given)]

Example 10. The work done in raising a mass of 15 gm from the ground to a table of 1m height is

(A) 15 J (B) 152 J

(C) 1500 J (D) 0.15 J

Solution : (D)

W = mgh .15.01101015 3 J 



Example 11. A body is falling under gravity. When it loses a gravitational potential energy by U, its
speed is v. The mass of the body shall be

(A)
2U

v
(B)

U

2v

(C) 2

2U

v
(D) 2

U

2v

Solution : (C)

Loss in potential energy = gain in kinetic energy    2
2

1 2U
U mv m

2 v
   .

EXERCISE

1. The potential energy of a system is represented in the first figure. The force acting on the
system will be represented by

a O x 

U(x) 

(A)
a 

x 

F(x)

(B)
a 

x 

F(x) 

(C)
a 

x 

F(x) 

(D) a x 

F(x) 

2. A particle moves in a potential region given by  2U 8x 4x 400    J. Its state of
equilibrium will be

(A) x = 25 m (B) x = 0.25 m

(C) x = 0.025 m (D) x = 2.5 m

3. Two springs of spring constants 1500 N/m and 3000 N/m respectively are stretched with
the same force. They will have potential energy in the ratio

(A) 4 : 1 (B) 1 : 4

(C) 2 : 1 (D) 1 : 2

4. A body is attached to the lower end of a vertical spiral spring and it is gradually lowered to
its equilibrium position. This stretches the spring by a length x. If the same body attached to
the same spring is allowed to fall suddenly, what would be the maximum stretching in this
case

(A) x (B) 2x

(C) 3x (D) x/2



5. Two equal masses are attached to the two ends of a spring of spring constant k. The
masses are pulled out symmetrically to stretch the spring by a length x over its natural
length. The work done by the spring on each mass is

(A)
21

kx
2

(B)
21

kx
2



(C)
21

kx
4

(D)
21

kx
4



6.
80

Hg208 nucleus is bombarded by -particles with velocity 107 m/s. If the -particle is
approaching the Hg nucleus head-on then the distance of closest approach will be

(A) 1.115 × 10–13 m (B) 11.15 × 10–13 m

(C) 111.5 × 10–13 m (D) Zero

7. A charged particle A moves directly towards another charged particle B. For the system,
the total momentum is P and the total energy is E

(A) P and E are conserved if both A and B are free to move

(B) (A) is true only if A and B have similar charges

(C) If B is fixed, E is conserved but not P

(D) If B is fixed, neither E nor P is conserved

8. A liquid of density d is pumped by a pump P from situation (i) to situation (ii) as shown in
the diagram. If the cross-section of each of the vessels is a, then the work done in pumping
(neglecting friction effects) is

(A) 2dgh

h h 

(i) 

2h 

(ii) 

(B) dgha

(C) 2dgh2a

(D) dgh2a

9. The mass of a bucket containing water is 10 kg. What is the work done in pulling up the
bucket from a well of depth 10 m if water is pouring out at a uniform rate from a hole in it

and there is loss of 2kg of water from it while it reaches the top )sec/10( 2mg 

(A) 1000 J (B) 800 J

(C) 900 J (D) 500 J

10. A rod of mass m and length l is lying on a horizontal table. The work done in making it stand on
one end will be

(A) mgl (B)
mg

2

l

(C)
mg

4

l
(D) 2mgl



There are various form of energy

(i) mechanical energy (ii) chemical energy (iii) electrical energy (iv) magnetic energy

(v) nuclear energy (vi) sound energy (vii) light energy etc

Energy of system always remain constant it can neither be created nor it can be destroyed however it
may be converted from one form to another

Example

Law of Conservation of Energy.

(1) Law of conservation of energy

For a body or an isolated system by work-energy theorem we have 2 1K K F.dr  
 

...(i)

But according to definition of potential energy in a conservative field 2 1U U F.dr  
 

...(ii)

So from equation (i) and (ii) we have

K
2
 – K

1
 = –(U

2
 – U

1
)

or K
2
 + U

2
 = K

1
 + U

1

i.e. K + U = constant.

For an isolated system or body in presence of conservative forces the sum of kinetic and
potential energies at any point remains constant throughout the motion. It does not depend upon
time. This is known as the law of conservation of mechanical energy.

(K + U) = E = 0 [As + is constant in a conservative field]

 K + U = 0

i.e. if the kinetic energy of the body increases its potential energy will decrease by an equal amount
and vice-versa.

(2) Law of conservation of total energy : If some non-conservative force like friction is also
acting on the particle, the mechanical energy is no more constant. It changes by the amount of
work done by the frictional force.

(K + U) = E = W
f

[where W
f
 is the work done against friction]

The lost energy is transformed into heat and the heat energy developed is exactly equal to loss in
mechanical energy.

We can, therefore, write E + Q = 0 [where Q is the heat produced]

This shows that if the forces are conservative and non-conservative both, it is not the
mechanical energy alone which is conserved, but it is the total energy, may be heat, light, sound
or mechanical etc., which is conserved.

In other words : “Energy may be transformed from one kind to another but it cannot be
created or destroyed. The total energy in an isolated system is constant”. This is the law of
conservation of energy.



Electric energy  Motor  Mechanical energy

Mechanical energy  Generator  Electrical energy
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SOLVED EXAMPLE

Example 1. Two stones each of mass 5kg fall on a wheel from a height of 10m. The wheel stirs 2kg
water. The rise in temperature of water would be

(A) 2.6° C (B) 1.2° C

(C) 0.32° C (D) 0.12° C

Solution : (D)

For the given condition potential energy of the two masses will convert into heat and
temperature of water will increase W = JQ    2m  g  h = J(m

w
 S t) 

)102(2.4101052 3 t

 3

1000
t 0.119 C 0.12 C

8.4 10
     





Example 2. A boy is sitting on a swing at a maximum height of 5m above the ground. When the swing
passes through the mean position which is 2m above the ground its velocity is
approximately (A) 7.6 m/s (B) 9.8 m/s

(C) 6.26 m/s (D) None of these

Solution : (A)

By the conservation of energy Total energy at point A = Total energy at point B

   
2

1 2

1
mgh mgh mv

2
 

h2 = 2m
h1 = 5m

A

B 21
9.8 5 9.8 2 v

2
   

 v2 = 58.8 v = 7.6 m/s 8.582 v    smv /6.7

Example 3. A block of mass M slides along the sides of a bowl as shown in the figure. The walls of the
bowl are frictionless and the base has coefficient of friction 0.2. If the block is released
from the top of the side, which is 1.5 m high, where will the block come to rest ? Given that
the length of the base is 15 m

(A) 1 m from P M

15 m 

1.5 m 

R 

Q P 

(B) Mid point

(C) 2 m from P

(D) At Q

Solution : (B)

Potential energy of block at starting point = Kinetic energy at point P = Work done against
friction in traveling a distance s from point P.

 mgh =  mgs    
h 1.5

s 7.5m
0.2

  


i.e. block come to rest at the mid point between P and Q.

Example 4. If we throw a body upwards with velocity of 4 ms–1 at what height its kinetic energy
reduces to half of the initial value? Take g = 10 m/s2

(A) 4m (B) 2 m

(C) 1 m (D) None of these

Solution : (D)

We know kinetic energy 
21

K mv v K
2

  

When kinetic energy of the body reduces to half its velocity becomes

v = 
u 4

2 2 m / s
2 2

 

From the equation v2 = u2 – 2gh  2 2(2 2) (4) 2 10h        
16 8

h 0.4m
20


  .



Example 5. A 2kg block is dropped from a height of 0.4 m on a spring of force constant
11960  NmK . The maximum compression of the spring is

(A) 0.1 m (B) 0.2 m

(C) 0.3 m (D) 0.4 m

Solution : (A)

When a block is dropped from a height, its potential energy gets converted into kinetic
energy and finally spring gets compressed due to this energy.

 Gravitational potential energy of block = Elastic potential energy of spring

 21 2mgh 2 2 10 0.4
mgh Kx x 0.09 m 0.1 m

2 K 1960

  
     

Example 6. A block of mass 2kg is released from A on the track that is one quadrant of a circle of radius
1m. It slides down the track and reaches B with a speed of  and finally stops at C at a distance
of 3m from B. The work done against the force of friction is

(A) 10 J
2kg 

1m 

B 

A 

C 

(B) 20 J

(C) 2 J

(D) 6 J

Solution : (B)

Block possess potential energy at point A = mgh

Finally block stops at point C. So its total energy goes against friction i.e. work done
against friction is 20 J.

Example 7. A stone projected vertically upwards from the ground reaches a maximum height h. When
it is at a height  the ratio of its kinetic and potential energies is

(A) 3 : 4 (B) 1 : 3

(C) 4 : 3 (D) 3 : 1

Solution : (B)

At the maximum height,  Total energy = Potential energy = mgh

At the height , Potential energy =

and Kinetic energy = Total energy – Potential energy

EXAMPLE

Example 1. A meter scale of mass m initially vertical is displaced at 45º keeping the upper and fixed, the
charge in PE will be-

Solution. Work = change in PE = Force × displacement

dU = mg (1 cos )
2

 q


45º

/2 G'

G



= mg × º1
(1 cos 45 )

2
        (  = 1m)

= 
mg 1

1
2 2

  
 

Example 2. If the speed of a car increases 4 times, the stopping distance for this will increase by -

Solution. Work = Change in KE

  FS = 
1

2
mv2 – 0 = 21

mv
2

2

2

S' v'

S v


 S '
16

S


 S’ = 16 S

Example 3. If the potential energy function for a particle is U = a – 2

b c

x x
 the force constant for os-

cillation will be.

Solution. U = a – 2

b c

x x
 ....(1)

 2 3

dU b 2c

dx x x
   ....(2)

and 
2

2 3

d U 1 6c
2b

xdx x
    
 

....(3)

` for equilibrium

dU
0

dx
      x = 

b

c2

 Substituting this value in (3)

32

2

d U b

dx 2c
   
 

 
4

3

6c b
2b

2c / b 8c
     

as
2

2

d U
K

dx
   K = b4/8c3

Example 4. On passing through a wooden sheet a bullet looses 1/20 of initial velocity. The minimum num-
ber of sheets required to completely stop the bullet will be-



Solution. Use v2 = u2 + 2as

for a sheet of thickness s v = (19/20)u

219
u u 2as

20
    
 

2as = (361/400)u2 – u2 a = – 
239 u

400 2s
 
 
 

suppose for n sheet v = 0

 02 = u2 + 2a (ns) n = – 
2u

2as
 = 

2

2

u
11

39 u
2 s

400 2s


   
 

Example 5. The work done in taking out 2 lit of water using a bucket of mass 0.5 kg from a well of depth
6m will be-

Solution. W = mgh

= (m
bucket

 + m
water

)gh [2 Lit water = 2 kg water]

= (0.5 + 2.00) × 9.8 × 6

= 15 × 9.8 = 147 J

Example 6. A body has velocity 200 m/s and its kinetic energy is 200 J. The mass of the body would be

Solution. 21
mv E

2


or 2 2

2E 2 200
m

v (200)

   
 

2

4

4 10 1

1004 10


 



 m = 0.01 kg

Example 7. A body falls on the surface of the earth from a height of 20 cm. If after colliding with the earth,
its mechanical energy is lost by 75%, then body would reach upto a height of

Solution.
1

mgh mgh '
4




h 1

h ' 20 5cm
4 4

   

Example 8. Potential energy function describing the interaction between two atoms of a diatomic mol-

ecule is 
12 6

a b
U(x)

x x
 



In stable equilibrium, the distance between them would be

Solution. In stable equilibrium potential energy is minimum. For minimum value of U(x)

d
[U(x)] 0

dx


or 12 6

d a b
0

dx x x
   
 

or 13 7

12a 6b
0

x x


 

or 6
13

6
( 2a bx ) 0

x
   or bx6 – 2a = 0


6/1

b

a2
x 









Example 9. Two electrons are at a distance of 1 × 10–12m from each other. Potential energy (in eV) of this
system would be

Solution. Potential energy of the system

1 2Kq q
U

r


9 19 19

12

9 10 1.6 10 1.6 10

1 10

 



    



= 23.04 × 10—17 Joule

17
3

19

23.04 10
eV 1.44 10 eV

1.6 10






  



Example 10. Potential energy function U(r) corresponding to the central force 
2

K
F

r
  would be

Solution. Central force is conservative. Therefore

dU
ˆF(r) VU r

dr
   



or dU F(r).dr F(r)dr   


 2

k
U dU F(r)dr dr

r
      

k
C

r
 

1
2

1
K dr Kr C

r
   

If at r = , U = 0, then C = 0

U = Kr–1 = 
K

r

Example 11. The stopping distance for a vehicle of mass M moving with speed v along level road, will be
( is the coefficient of friction between tyres and the road)



Solution. When the vetical of mass m is moving with velocity v, the kinetic energy of the where
K = 1/2 mv2 and if S is the stopping distance, work done by the friction

W = FS cos q = m MgS cos 180º = – m MgS

So by Work-Energy theorem, W = K = K
f
 – k

i

 –  MgS = 0 – 1/2 Mv2

 S = 
2v

2 g

Example 12. A particle of mass m is moving in a horizontal circle of radius r, under a centripetal force equal
to (–k/r2), where k is constant. The total energy of the particle is

Solution. As the particle is moving in a circle, so

2

2

mv k

r r
 Now K.E = 

1

2
 mv2 = 

k

2r

Now as  
dr

dU
F  P.E, 




r

drFU

r

2

k
dr

r

   
   

k

r
 

So total energy = P.E + K.E.

k k

r 2r
    

k

2r
 

Negative energy means that particle is in bound state.

EXERCISE

1. A particle of mass ‘m’ and charge ‘q’ is accelerated through a potential difference of ‘V’
volt. Its energy is

(A) qV (B) mqV

(C)
q

V
m

 
 
 

(D)
q

mV

2. An ice cream has a marked value of 700 kcal. How many kilowatt hour of energy will it
deliver to the body as it is digested

(A) 0.81 kWh (B) 0.90 kWh

(C) 1.11 kWh (D) 0.71 kWh

3. A metallic wire of length L metres extends by l metres when stretched by suspending a
weight Mg to it. The mechanical energy stored in the wire is

(A) 2 Mgl (B) Mgl

(C)
Mgl

2
(D)

Mgl

4



 4. The work done by a person in carrying a box of mass 10 kg. through a vertical height of 10
m is 4900J. The mass of the person is

(A) 49 kg (B) 10 kg

(C) 40 kg (D) 98 kg

5. A uniform rod of length 4m and mass 20kg is lying horizontal on the ground. The work done
in keeping it vertical with one of its ends touching the ground, will be -

(A) 20 J (B)  392 J

(C) 98 J (D) 390 J .

6. A man throws the bricks to the height of 12 m where they reach with a speed of 12 m/sec.
If he throws the bricks such that they just reach this height, what percentage of energy will
he save

(A) 38% (B) 40%

(C) 20% (D) 72%

7 A body of mass 8 kg moves under the influence of a force. The position of the body and time
are related as x = 1/2t2 where x is in meter and t in sec. The work done by the force in first two
seconds.

(A) 20 J (B)  16 J

(C) 8 J (D) 32 J .

 POWER

Power of a body is defined as the rate at which the body can do the work.

Average power  
w

P , Where w is the work done in time t
t


  



Instantaneous power inst

dw
P ; Its value may change with time.

dt


i.e. power is equal to the scalar product of force with velocity.  P F.V
r r

      Important points

(1) Dimension : 1 2 3[M L T ]

(2) Units : Watt or Joule/sec [S.I.]

Erg/sec [C.G.S.]

Practical units :  Kilowatt (kW), Mega watt (MW) and Horse power (hp)

Relations between different units :

71 watt =1 joule/sec =10 erg / sec

1 kW = 103 W

1 Meg watt = 106 W

1 HP = 746 W



(3) If work done by the two bodies is same then power 
1

P
time



i.e. the body which performs the given work in lesser time possesses more power and vice-versa.
(4) As power = work/time, any unit of power multiplied by a unit of time gives unit of work (or

energy) and not power, i.e. Kilowatt-hour or watt-day are units of work or energy.

3 6J
1kWh 10 (60 60sec) 3.6 10 J

sec
     

(5) The slope of work time curve gives the instantaneous power. As P = dW/dt = tanq

Work

Time

q 

(6) Area under power time curve gives the work done as 
dw

P
dt



 W Pdt 
 W = Area under P-t curve

SOLVED EXAMPLE

Example 1. A car of mass ‘m’ is driven with acceleration ‘a’ along a straight level road against a
constant external resistive force ‘R’. When the velocity of the car is ‘v’, the rate at which
the engine of the car is doing work will be

(A) Rv (B) mav

(C) vmaR )(  (D) vRma )( 

Solution : (C)

The engine has to do work against resistive force R as well as car is moving with acceleration
a.

Power = Force  velocity = (R+ma)v.

Example 2. A wind-powered generator converts wind energy into electrical energy. Assume that the
generator converts a fixed fraction of the wind energy intercepted by its blades into
electrical energy. For wind speed v, the electrical power output will be proportional to

(A) v (B) v2

(C) v3 (D) v4

Solution : (C)

Force 
2dm d d d

v v (V ) v [A ] v A Av
dt dt dt dt

        
l

l

Power = F  v = Av2 × v = Av3  P   v3



Example 3. A pump motor is used to deliver water at a certain rate from a given pipe. To obtain twice

as much water from the same pipe in the same time, power of the motor has to be

increased to

(A) 16 times (B) 4 times

(C) 8 times (D) 2 times

Solution : (D)

work done mgh
P P m

time t
   

i.e. To obtain twice water from the same pipe in the same time, the power of motor has to be

increased to 2 times.

Example 4. A force applied by an engine of a train of mass 2.05 × 106 kg changes its velocity from

5 m/s to 25 m/s in 5 minutes. The power of the engine is

(A) 1.025 MW (B) 2.05 MW

(C) 5MW (D) 5 MW

Solution : (B)  2 2 6 2 2
2 1

1 1
m v v 2.05 10 [25 5 ]work done increase in kinetic energy 2 2Power

time time t 5 60

    
   


= 2.05 × 106 watt = 2.05 MW

Example 5. From a water fall, water is falling at the rate of 100 kg/s on the blades of turbine. If the

height of the fall is 100m then the power delivered to the turbine is approximately equal to

(A) 100kW (B) 10 kW

(C) 1kW (D) 1000 kW

Solution : (A)

5work done mgh
Power 100 10 100 10 watt 100kW

t t
       



  )given(

sec
100 As

kg

t

m

Example 6. A particle moves with a velocity 1ˆ ˆ ˆv 5i 3j 6k ms  
  under the influence of a constant

force ˆ ˆ ˆF 10i 10j 20k N  


. The instantaneous power applied to the particle is

(A) 200 J-s–1 (B) 40 J-s–1

(C) 140 J-s–1 (D) 170 J-s–1

Solution : (C)

1ˆ ˆ ˆ ˆ ˆ ˆP F.v (10i 10j 20k).(5i 3j 6k) 50 30 120 140 J s          
 



EXERCISE

 1. A car of mass 1250 kg experience a resistance of 750 N when it moves at 30ms–1. If the
engine can develop 30kW at this speed, the maximum acceleration that the engine can
produce is

(A) 0.8 ms–2 (B) 0.2 ms–2

(C) 0.4 ms–1 (D) 0.5 ms–2

2. A bus weighing 100 quintals moves on a rough road with a constant speed of 72km/h. The
friction of the road is 9% of its weight and that of air is 1% of its weight. What is the
power of the engine. Take g = 10m/s2

(A) 50 kW (B) 100 kW

(C) 150 kW (D) 200 kW

3. Two men with weights in the ratio 5 : 3 run up a staircase in times in the ratio 11 : 9. The
ratio of power of first to that of second is

(A)
11

15
(B)

15

11

(C)
9

11
(D)

11

9

4. A dam is situated at a height of 550 metre above sea level and supplies water to a power
house which is at a height of 50 metre above sea level. 2000 kg of water passes through
the turbines per second. The maximum electrical power output of the power house if the
whole system were 80% efficient is

(A) 8 MW (B) 10 MW

(C) 12.5 MW (D) 16 MW

 5. A constant force F is applied on a body. The power (P) generated is related to the time
elapsed (t) as

(A) P   t2 (B) P   t

(C) P t (D) P   t3/2

COLLISION

Collision is an isolated event in which a strong force acts between two or more bodies for a short
time as a result of which the energy and momentum of the interacting particle change.

In collision particles may or may not come in real touch e.g. in collision between two billiard balls or
a ball and bat there is physical contact while in collision of alpha particle by a nucleus (i.e.
Rutherford scattering experiment) there is no physical contact.

m2m1

u2u1

m1 m2
m2m1

v2v1

m1 m2

F 

Before collision After collisionDuring collision

t 

Fext 

t 



(1) Stages of collision : There are three distinct identifiable stages in collision, namely, before,
during and after. In the before and after stage the interaction forces are zero. Between these
two stages, the interaction forces are very large and often the dominating forces governing the
motion of bodies. The magnitude of the interacting force is often unknown, therefore, Newton’s
second law cannot be used, and the law of conservation of momentum is useful in relating the
initial and final velocities.

(2) Momentum and energy conservation in collision :

(i) Momentum conservation : In a collision the effect of external forces such as gravity or
friction are not taken into account as due to small duration of collision (t) average
impulsive force responsible for collision is much larger than external force acting on the
system and since this impulsive force is ‘Internal’ therefore the total momentum of system
always remains conserved.

(ii) Energy conservation : In a collision ‘total energy’ is also always conserved. Here total
energy includes all forms of energy such as mechanical energy, internal energy, excitation
energy, radiant energy or even mass energy.

These laws are the fundamental laws of physics and applicable for any type of collision but
this is not true for conservation of kinetic energy.

(3) Types of collision : (i)  On the basis of conservation of kinetic energy.

Perfectly elastic collision Inelastic collision Perfectly inelastic collision 

If in a collision, kinetic energy 
after collision is equal to 
kinetic energy before collision, 
the collision is said to be 
perfectly elastic. 

If in a collision kinetic energy 
after collision is not equal to 
kinetic energy before collision, 
the collision is said to inelastic. 

If in a collision two bodies 
stick together or move with 
same velocity after the 
collision, the collision is said 
to be perfectly inelastic. 

Coefficient of restitution e = 1 Coefficient of restitution 0 < e < 1 Coefficient of restitution e = 0 

 

 

(KE)final = (KE)initial  

Here kinetic energy appears in 
other forms. In some cases 
(KE)final < (KE)initial such as  when 
initial KE is converted into 
internal energy of the product (as 
heat, elastic or excitation) while 
in other cases (KE)final > 
(KE)initial  such as when internal 
energy stored in the colliding 
particles is released 

The term 'perfectly inelastic' 
does not necessarily mean that 
all the initial kinetic energy is 
lost, it implies that the loss in 
kinetic energy is as large as it 
can be. (Consistent with 
momentum conservation). 

Examples : (1) Collision 
between atomic particles 
(2) Bouncing of ball with same 
velocity after the collision with 
earth. 

Examples : (1) Collision between 
two billiard balls. 
(2) Collision between two 
automobile on a road. 
In fact all majority of collision 
belong to this category. 

Example : Collision between a 
bullet and a block of wood into 
which it is fired. When the 
bullet remains embeded in the 
block. 

(ii) On the basis of the direction of colliding bodies



Head on or one dimensional collision Oblique collision

In a collision if the motion of colliding particle If two particle collision is ‘glancing’ i.e.
such

before and after the collision along the same that their directions of motion after
collision
line the collision is said to be head on or one is called oblique.
dimensional.

In oblique collision the particles before an
after collision are in same plane, the
collision: called 2-dimensional otherwise 
3-dimensional.

Impact parameter b is zero for this type of Impact parameter b lies between 0 and

collision r
1
 + r

2 
i.e. 0 < b < (r

1
 + r

2
) where r

1
 and r

2

a radii of colliding bodies

m1 m2 m1 m2

u1 u2 v1 v2

Before
Collision

After
Collision

       

m1 m2

u1

u2

Before
Collision

After
Collision

b

m1

m2

q

f

Example : collision of two gliders on an air Example : Collision of billiard balls
track

PERFECTLY ELASTIC HEAD ON COLLISION

Let two bodies of masses m
1
 and m

2
 moving with initial velocities u

1
 and u

2
 in the same direction and

they collide such that after collision their final velocities are v
1
 and v

2
 respectively.

Before collision After collision

m1

u1 u2
m2 m1

v1 v2

m2

According to law of conservation of momentum

m
1
u

1
 + m

2
u

2
 = m

1
v

1
 + m

2
v

2
...(i)

 m
1
(u

1
 – v

1
) = m

2
(v

2
 – u

2
) ...(ii)

According to law of conservation of kinetic energy

2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 1
m u m u m v m v

2 2 2 2
   ...(iii)

 2 2 2 2
1 1 1 2 2 2m (u v ) m (v u )   ...(iv)



Dividing equation (iv) by equation (ii)

v
1
 + u

1
 = v

2
 + u

2
...(v)

 u
1
 – u

2
 = v

2
 – v

1
...(vi)

Relative velocity of approach = Relative velocity of separation

Note :

 The ratio of relative velocity of separation and relative velocity of approach is defined as
coefficient of restitution.

2 1

1 2

v v
e

u u





    or   v

2
 – v

1
 = e(u

1
 – u

2
)

 For perfectly elastic collision

e = 1    v
2
 – v

1
 = u

1
 – u

2
      (As shown in eq. (vi)

 For perfectly inelastic collision

e = 0    v
2
 – v

1
 = 0 or v

2
 = v

1
 or 12 vv 

It means that two body stick together and move with same velocity.

 For inelastic collision

0 < e < 1

 In short we can say that e is the degree of elasticity of collision and it is dimension less
quantity.

Further from equation (v) we get       v
2
 = v

1
 + u

1
 – u

2

Substituting this value of  in equation (i) and rearranging we get

1 2 2 2
1 1

1 2 1 2

m m 2m u
v u

m m m m

 
    

……(vii)

Similarly we get
2 1 1 1

2 2
1 2 1 2

m m 2m u
v u

m m m m

 
    

……(viii)

 (1) Special cases of head on elastic collision



(i) If projectile and target are of same mass i.e. m1 = m2  

Since 1 2 2
1 1 2

1 2 1 2

m m 2m
v u u

m m m m

 
    

         and  2 1 1 1
2 2

1 2 1 2

m m 2m u
v u

m m m m

 
    

 

Substituting 1 2m m  we get   

1 2v u    and   2 1v u   

It means when two bodies of equal masses undergo head on elastic collision, their velocities get 
interchanged. 

Example : Collision of two billiard balls 

 

 

 

(ii) If massive projectile collides with a light target i.e. m1 >> m2 

Since 1 2 2 2
1 1

1 2 1 2

m m 2m u
v u

m m m m

 
    

     and    2 1 1 1
2 2

1 2 1 2

m m 2m u
v u

m m m m

 
    

 

Substituting 2m 0 , we get 

1 1v u  and 2 1 2v 2u u   

Example : Collision of a truck with a cyclist 

 

 

 

 

 Before collision      After collision 

(iii) If light projectile collides with a very heavy target i.e. m1 << m2  

Since 1 2 2 2
1 1

1 2 1 2

m m 2m u
v u

m m m m

 
    

       and         2 1 1 1
2 2

1 2 1 2

m m 2m u
v u

m m m m

 
    

 

Substituting 1m 0 , we get  

1 1 2v u 2u    and 2 2v u  

Example : Collision of a ball with a massive wall. 

 

 

 

 

 

 

Sub case : 2u 0  i.e. target is at 
rest 

01 v 12 uv 

Sub case : 2u 0  i.e. target is at 

rest 

v1 = u1 and v2 = 2u1  

Sub case : 2u 0  i.e. target is at 

rest 

v1 = – u1 and v2 = 0 

i.e. the ball rebounds with same speed 
in opposite direction when it collide 
with stationary and very massive wall. 

u1 = 50m/s 

10 kg 

Before collision 

u2 = 20m/s 

10 kg 

After collision 

v1 = 20 m/s 

10 kg 

v2 = 50 m/s 

10 kg 

m1 = 50gm 

u1 = 30 m/s 

Before collision 

v2 = 2 m/s u2 = 2 m/s 

m2 = 100 
kg 

v1 = – 26 
m/s 

After collision 

v1 = 120 km/hr 

v2 = 230 
km/hr 

m1 = 103 
kg 

m2 = 60 

u1 = 120 km/hr 

u2 = 10 



(2) Kinetic energy transfer during head on elastic collision

Kinetic energy of projectile before collision 
2

i 1 1

1
K m u

2


Kinetic energy of projectile after collision 
2

f 1 1

1
K m v

2


Kinetic energy transferred from projectile to target K = decrease in kinetic energy in projectile

2 2 2 2
1 1 1 1 1 1 1

1 1 1
K m u m v m (u v )

2 2 2
     

Fractional decrease in kinetic energy 

2 2 2
1 1 1

1

2 1
1 1

1
m (u v ) vK 2 1

1K um u
2

  
    

 
...(i)

We can substitute the value of 1v  from the equation 1 2 2 2
1 1

1 2 1 2

m m 2m u
v u

m m m m

 
    

If the target is at rest i.e. u
2
 = 0 then 1 2

1 1
1 2

m m
v u

m m

 
   

From equation (i) 

2

1 2

1 2

m mK
1

K m m

 
    

...(ii)

or
1 2

2
1 2

4m mK

K (m m )




 ...(iii)

or
1 2
2

1 2 1 2

4m mK

K (m m ) 4m m




  ...(iv)

Note :

 Greater the difference in masses less will be transfer of kinetic energy and vice versa

 Transfer of kinetic energy will be maximum when the difference in masses is minimum

i.e. m
1
 – m

2
 = 0 or  m

1
 = m

2
then

K
1 100%

K


 

So the transfer of kinetic energy in head on elastic collision (when target is at rest) is maximum
when the masses of particles are equal i.e. mass ratio is 1 and the transfer of kinetic energy is
100%.

 If m
2
 = nm

1
 then from equation (iii) we get 2

K 4n

K (1 n)






 Kinetic energy retained by the projectile  
Retained

K
1

K

    
 

 kinetic energy transferred by

projectile



2 2

1 2 1 2

Re tained 1 2 1 2

m m m mK
1 1

K m m m m

                        



(3) Velocity, momentum and kinetic energy of stationary target after head on elastic collision

 

Before collision After collision 

m1 
u1 u2 

m2 m1 
v1 v2 

m2 u
2

(i) Velocity of target : We know 2 1 1 1
2 2

1 2 1 2

m m 2m u
v u

m m m m

 
    

  1 1 1 2
2 2

1 2 2 1 1

2m u 2u m
v [As u 0 and Let n]

m m 1 m / m m
   

 

 1
2

2u
v

1 n




(ii) Momentum of target : 1 1
2 2 2

2nm u
P m v

1 n
 


1

2 1 2

2u
As m m n and v

1 n
    

 1 1
2

2m u
P

1 (1 / n)




(iii) Kinetic energy of target : 
2 2

2 1 1 1
2 2 2 1 2

2u 2m u n1 1
K m v nm

2 2 1 n (1 n)
      

1
2

4(K )n

(1 n) 4n


 
2

1 1 1

1
As K m u

2
   

(iv) Relation between masses for maximum velocity, momentum and kinetic energy

Velocity 
n

u
v




1

2 1
2  

For 2v  to be maximum n must be 

minimum 

i.e.  0
1

2 
m

m
n  12 mm   

 

Target should be very 
light. 

Momentum 
)/11(

2 11
2 n

um
P


  

For 2P  to be maximum, (1/n) 

must be minimum or n must be 
maximum. 

i.e.  
1

2

m

m
n  12 mm   

 

Target should be massive. 

Kinetic 
energy 

nn

nK
K

4)1(

4
2
1

2




 

For 2K  to be maximum 2)1( n  

must be minimum. 

i.e.  
1

2101
m

m
nn   

12 mm   

 

Target and projectile 
should be of equal mass. 



Perfectly Elastic Oblique Collision

Before collision After collision

m2

m1

u1

q

v1

v2

u2f

m2

m1

Let two bodies moving as shown in figure.

By law of conservation of momentum

Along x-axis, m
1
u

1
 + m

2
u

2
 = m

1
v

1
 cosq + m

2
v

2
 cos f ...(i)

Along y-axis, 0 = m
1
v

1
 sin q  – m

2
v

2
 sin f          ...(ii)

By law of conservation of kinetic energy

2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 1
m u m u m v m v

2 2 2 2
            ...(iii)

In case of oblique collision it becomes difficult to solve problem when some experimental data are

provided as in these situations more unknown variables are involved than equations formed.

Special condition : If m
1
 = m

2
 and u

2
 = 0 substituting these values in equation (i), (ii) and (iii) we

get

u
1
 = v

1
 cos q + v

2
 cos f            ...(iv)

0 = v
1
 sin q – v

2
 sin f            ...(v)

and 2 2 2
1 1 2u v v             ...(vi)

Squaring (iv) and (v) and adding we get

2 2 2
1 1 2 1 2u v v 2v u cos( )   q  f            ...(vii)

Using (vi) and (vii) we get cos (q + f) = 0

 q + f = /2

i.e. after perfectly elastic oblique collision of two bodies of equal masses (if the second body is at
rest), the scattering angle q + f would be 90°.

Head on Inelastic Collision.

(1) Velocity after collision : Let two bodies A and B collide inelastically and coefficient of
restitution is e.

Where 2 1

1 2

v v
e

u u

Relative velocity of separation

Relative velocity of approach








 

Before collision After collision 

 
u1 = u u2 = 0 

m1 
v1 v2 

 m 2m1 m  2

 v
2
 – v

1
 = e(u

1
 – u

2
)

 v
2
 = v

1
 + e(u

1
 – u

2
) …(i)

From the law of conservation of linear momentum

m
1
u

1
 + m

2
u

2
 = m

1
v

1
 + m

2
v

2
…(ii)

By solving (i) and (ii) we get



1 2 2
1 1 2

1 2 1 2

m em (1 e)m
v u u

m m m m

    
        

Similarly
1 2 1

2 1 2
1 2 1 2

(1 e)m m em
v u u

m m m m

    
        

By substituting e = 1, we get the value of v
1
 and u

2
 for perfectly elastic head on collision.

(2) Ratio of velocities after inelastic collision : A sphere of mass m moving with velocity u hits

inelastically with another stationary sphere of same mass.


2 1 2 1

1 2

v v v v
e

u u u 0

 
 

 

 v
2
 – v

1
 = eu …(i)

By conservation of momentum :

Momentum before collision = Momentum after collision

mu = mv
1
 + mv

2

 v
1
 + v

2
 = u ……(ii)

Solving equation (i) and (ii) we get 1

u
v (1 e)

2
   and 2

u
v (1 e)

2
 


1

2

v 1 e

v 1 e






(3) Loss in kinetic energy

Loss (K) = Total initial kinetic energy – Total final kinetic energy

  = 
2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1
m u m u m v m v

2 2 2 2
        
   

Substituting the value of 1v  and 2v  from the above expression

Loss (K) = 
2 21 2

1 2
1 2

m m1
(1 e )(u u )

2 m m

 
   

By substituting e = 1 we get K = 0 i.e. for perfectly elastic collision loss of kinetic energy will
be zero or kinetic energy remains constant before and after the collision.

Rebounding of Ball After Collision With Ground.

If a ball is dropped from a height h on a horizontal floor, then it strikes with the floor with a speed.

 

v0 v1 v2 

h0 
h1 h2 

t0 t1 t2 



0 0v 2gh [From v
2
 = u

2
 + 2gh]

and it rebounds from the floor with a speed

1 0 0v ev e 2gh 
velocity after collision

As e
velocity before collision

 
 

 

(1) First height of rebound : 
2

21
1 0

v
h e h

2g
 

 h
1
 = e2h

0

(2) Height of the ball after nth rebound : Obviously, the velocity of ball after nth rebound will be

v
n
 = env

0

Therefore the height after nth rebound will be 
2

2nn
n 0

v
h e h

2g
 

 h
n
 = e2nh

0

(3) Total distance travelled by the ball before it stops bouncing

H = h
0
 + 2h

1
 + 2h

2
 + 2h

3
 + ........ = h

0
 + 2e2h

0
 + 2e4h

0
 + 2e6h

0
 + ....

H = h
0
(1 + e2 + 24 + e4 + e6 ...)]

2
0 2

1
h 1 2e

1 2

        
       

2 4
2

1
As1 e e ...

1 e
      


2

0 2

1 e
H h

1 e

 
   

(4) Total time taken  by the ball to stop bouncing

T = t
0
 + 2t

1
 + 2t

2
 + 2t

3
 + .... 

0 1 22h 2h 2h
2 2 ....

g g g
  

   = 
202h

[1 2e 2e .....]
g

         [As h
1
 = e2h

0
; h

2
 = e4h

0
]

   = 
2 302h

[1 2e(1 e e e .....0]
g

    0 02h 2h1 1 e
1 2e

g 1 e g 1 e

                


02h 1 e

T
g 1 e

    

 Perfectly Inelastic Collision.

In such types of collisions the bodies move independently before collision but after collision as a one single

body.

(1) When the colliding bodies are moving in the same direction

By the law of conservation of momentum



m
1
u

1
 + m

2
u

2
 = (m

1
 + m

2
)v

comb


1 1 2 2

comb
1 2

m u m u
v

m m






 

Before collision After collision 

m1 
u1 u2 

m2 m2 m1 

vcomb 

Loss in kinetic energy 2 2 2
1 1 2 2 1 2 comb

1 1 1
K m u m u (m m )v

2 2 2
      
 

21 2
1 2

1 2

m m1
K (u u )

2 m m

 
    

[By substituting the value of v
comb

]

(2) When the colliding bodies are moving in the opposite direction

By the law of conservation of momentum

comb212211 )()( vmmumum  (Taking left to right as positive)


21

2211
comb mm

umum
v






 

Before collision 

m1 
u1 

m1 
u2 

when 2211 umum   then 0comb v  (positive)

i.e. the combined body will move along the direction of motion of mass 1m .

when 2211 umum   then 0comb v  (negative)

i.e. the combined body will move in a direction opposite to the motion of mass .

(3) Loss in kinetic energy

K = Initial kinetic energy – Final kinetic energy
2 2 2

1 1 2 2 1 2 comb

1 1 1
= m u + m u - (m +m ) v

2 2 2
   
   
   

      
21 2

1 2
1 2

m m1
= (u +u )

2 m +m

Collision Between Bullet and Vertically Suspended Block.

A bullet of mass m is fired horizontally with velocity u in         
q L L – h 

h m u 
M 

M 

block of mass M suspended by vertical thread. After the

collision bullet gets embedded in block. Let the combined

system raised upto height h and the string makes an angle q
with the vertical.

(1) Velocity of system

Let v be the velocity of the system (block + bullet) just after the collision.

Momentum
bullet

 + Momentum
block

 = Momentum
bullet and block system

mu + 0 = (m + M)v




mu

v
(m M)


 ……(i)

(2) Velocity of bullet : Due to energy which remains in the bullet block system, just after the
collision, the system (bullet + block) raises upto height h.

By the conservation of mechanical energy 
21

(m M)v (m M)gh v 2gh
2

    

Now substituting this value in the equation (i) we get 
mu

2gh
m M





(m M) 2gh

u
m

 
  

  

(3) Loss in kinetic energy : We know the formula for loss of kinetic energy in perfectly inelastic
collision

21 2
1 2

1 2

m m1
K (u u )

2 m m
  



 21 mM
K u

2 m M
 


[As u

1
 = u, u

2
 = 0, m

1
 = m and m

2
 = M]

(4) Angle of string from the vertical

From the expression of velocity of bullet 
(m M) 2gh

u
m

 
  

  
 we can get 

22u m
h

2g m M
    

From the figure

L h h
cos 1

L L


q   

        
2u m

1
2gL m M

     

or
2

1 1 mu
cos 1

2gL m M


  q       

SOLVED EXAMPLE

Example 1. n small balls each of mass m impinge elastically each second on a surface with velocity u.
The force experienced by the surface will be

(A) mnu (B) 2 mnu

(C) 4 mnu (D) mnu
2

1

Solution. (B)



As the ball rebounds with same velocity therefore change in velocity = 2u and the mass
colliding with the surface per second = nm

Force experienced by the surface  
dv

F m
dt

    F = 2 mnu.

Example 2. A block of mass 12kg moving at 20 cm/s collides with an identical stationary block. If the
coefficient of restitution in 3/5 the loss in K.E during collision is -

Solution. The loss in K.E 2 21 2
1 2

1 2

m m1
E (1 e ) (u u )

2 m m
   



Here m
1
 = 2kg,   m

2
 = 2kg,   e = 3/5

u
1
 = 20 cm/sec = 0.2 m/s, u

2
 = 0

On substituting the values

1 12 12 9
E 1

2 12 12 25

        
 (0.2)2  = 21 16 2 2

6 7.7 10 J
2 25 10 10

     

Example 3. A ball is dropped from a height h on a stationary floor and rebounds several times until it stops.
If the coefficient of restitution is e, then the total distance covered by the ball before it stops,
would be

Solution. The height h
1
 up to which the ball rises after the first rebound is given by

h
1
 = e2h

After second rebound, h
2
 = e4h

After rebounding n times, h
n
 = (e2)nh  Total distance described

s = h + 2h
1
 + 2h

2
 + ....... + 2h

n
 + .....

= h + 2e2h + 2e4h + ....... + 2e2hh + ......   = h + 2e2h (1 + e2 + e4 + .... )

= 
2 2

2 2

2e h 1 e
h h

1 e 1 e

 
     

Example 4. A rifle man, who together with his rifle has a mass of 100 kg, stands on a smooth surface
fires 10 shots horizontally. Each bullet has a mass 10 gm a muzzle velocity of 800 m/s.
What velocity does rifle man acquire at the end of 10 shots.

Solution. Let m
1
 and m

2
 be the masses of bullet and the rifleman and v

1
 and v

2
 their respective

velocities after the first shot. Initially the rifleman and bullet are at rest, therefore initial
momentum of system = 0.

i.e. initial momentum = final momentum = m
1
v

1
 + m

2
v

2

or
3

1 1
2

2

m v (10 10 kg)(800m / s)
v

m 100kg


  

= – 0.08 m/s

Velocity acquired after 10 shots = 10 v
2
 = 10 × (–0.08)

= – 0.8 m/s

i.e., the velocity of rifle man is 0.8 m/s in a direction opposite to that of bullet.



Example 5. A bullet of mass 10 g travelling horizontally with a velocity 300 m/s strikes a block of wood
of mass 290 g which rests on a rough horizontal floor. After impact the block and the bullet
move together and come to rest when the block has travelled a distance of 15 m. The
coefficient of friction between the block and the floor will be (Duration of impact is very
short)

Solution. Let the mass of block and bullet be M and m respectively. If v is the velocity of bullet and
V is the velocity of block with bullet embedded in it,

Now according to conservation of momentum,

mv = (M + m) V

(10 x 10–3) (300/ = (290 x 10–3 + 10 x 10–3) V

or V = 10 mls

The kinetic energy just after impact is 1/2(M + m) V2, which is lost due to work done on it
by the force of friction F. Since force of friction F = m(M+m)g and the work done is given
by Fd, we have

1/2 (M + m) V2 =  (M + m) gd

or m = 
21 V

2 gd    
21 10 1

2 (10) (15) 3
  

NOTE- Here an external horizontal force due to friction is present however as it has been assumed that
impact lasted for such a small interval of time that the block could not move appreciably no work
was done by friction during impact. Here during impact the presence of friction cannot be
ignored.

Example 6. A block of mass m
1
 = 150 kg is at rest on a very long frictionless table, one end of which is

terminated in a wall. Another block of mass m
2
 is placed between the first block and the

wall, and set in motion towards m
1
 with constant speed u

2
 Assuming that all collisions are

completely elastic, find the value of m
2
 for which both blocks move with the same velocity

after m
2
 has collided once with m

1
 and once with the wall. (The wall has effectively infinite

mass.)

Solution. Let after the collision,

v
1
 = speed of mass m

1
 towards left

v
2
 = speed of mass m

2
 towards right.

Hence, momentum before collision = momentum after collision

m
2
u

2 
= m

1
v

1
 – m

2
v

2
.....(1)

The mass m
2
 rebounds elastically from the wall and its velocity gets reversed after the

collision with the wall.

According to the problem, the mass m
2
 has the same speed as that of mass m1 after its

collision with the wall i.e. v
2
 = v

1
 . From eq.

m
2
u

2
 = (m

1
 – m

2
) v

1
.....(2)

Since the collision is elastic, then  2 2 2
2 2 1 1 2 1

1 1 1
m u m v m v

2 2 2
 

m
2
u

2
2 = (m

1
 + m

2
) v

1
2 ......(3)



From eq. (2), 2 2
1

1 2

m u
v

m m




Substituting this value of v
1
 in eq. (3), we get

2
21

2
22212

22
)mm(

)um)(mm(
um






or (m
1
 – m

2
)2 = (m

1
 + m

2
) (m

2
)

or m
1

2 + m
2

2 – 2m
1
 m

2
 = m

1
 m

2
 + m

2
2   or   m

1
2 = 3 m

1
 m

2
 m

1
 = 3m

2

or 1
2

m 150
m 50.kg

3 3
  

Example 7. A ball moving with a speed of 9 m/s strikes with an identical stationary ball such that after
the collision the direction of each ball makes an angle of 30° with the original line of motion.
Find the speeds of the two balls after the collision. Is the kinetic energy conserved in this
collision process?

Solution. Initial momentum of the balls = m × 9 + m × 0 = 9 m ...(1)

where m is the mass of each ball.

Let after collision their velocities are v
1
 and v

2
 respectively.

Final momentum of the balls after collision along the same line = mv
1
 cos 30 + mv

2
 cos30

1 2mv 3 mv 3

2 2
  ...(2)

According to law of conservation of momentum

1 2mv 3 mv 3
9m

2 2
 

9m/s

Stationary
ball

1 2

9 2
v v

3


  ...(3)

(A) Before collision

The initial momentum of the balls along perpendicular direction = 0.

Final momentum of balls along the perpendicular direction

= mv
1
 sin 30 – mv

2
 sin 30 = 

m

2
(v

1
 – v

2
)

Again by the law of conservation of momentum

(m/2)(v
1
 – v

2
) = 0

   (v
1
 – v

2
) = 0 .....(4)

30º
30º

v2

v1

Solving equations (3) and (4), we have (B) After collision

v
1
 = 3 3 m/s and v

2
 = 3 3  m/s



According to law of conservation of energy.

Energy before collision = Energy after collision

2 2 2 2
1 2 1 2

1 1 1 1
mu m u m v m v

2 2 2 2
         2 2 21 1 1

m(9) 0 m(3 3) m(3 3)
2 2 2

  

81m 54 m

2 2
   L.H.S.  R.H.S.

i.e., energy is not conserved in this collision or this is a case of inelastic collision.

Example 8. A sphere of mass 8 kg moving at constant speed 50 m/s, contains a compressed light spring
with strain energy 15,000 joule. At a given instant, the spring breaks and causes the sphere
to explode into tow pieces of equal masses. If one piece flies off at 30° to the original
velocity of the sphere, find the direction of motion of the other piece and magnitudes of the
velocities of the two pieces. Assume the energy of the compressed spring is completely
imparted to the two pieces all kinetic energy.

Solution. The situation is shown in fig.

Let v
1
 and v

2
 be the velocities of two pieces after explosion.

Applying the law of conservation of energy,

we have

2 2 2
1 2

1 1 1
(8) (50) 15000 (4)v (4)v

2 2 2
  

q
30º

m =4kg2

v1

v2

m =4kg1

m = 8kg

u = 50m/s

or 25000 = 2(v
1

2 + v
2

2) ....(1)

Applying the law of conservation of momentum along x-axis and y-axis respectively, we get

8(5) = 4 v
1
 cos q + v

2
 cos 30º ....(2)

and 0 = 4v
1
 sin q = 4 v

2
 sin 30º = 2v

2
....(3)

or
2

1

v
sin

2v
q  ....(4)

From eq. (2)

100 = v
1
 cos q + v

2
 cos 30

or
2
2

1 22
1

v 3
100 v 1 v

4v 2

  
          

   or 
2 2
1 2 2

1

4v v v 3
100 v

2 2


  ....(5)

Solving equations (1) and (5) for v
1
 and v

2
 we get

v
1
 = 51.56 m/s  and v

2
 = 99.2 m/s

Now
99.2

sin
2 51.56

q 


 Solving we get q = 74º8



EXERCISE

1. A particle of mass m moving with horizontal speed 6 m/sec. If m<<M then for one
dimensional elastic collision, the speed of lighter particle after collision will be

(A) 2 m/sec in original direction (B) 2 m/sec opposite to the original direction

(C) 4 m/sec opposite to the original direction (D) 4 m/sec in original direction

2. A body of mass m moving with velocity v makes a head-on collision with another body of mass
2m which is initially at rest. The loss of kinetic energy of the colliding body (mass m) is

(A)
2

1
 of its initial kinetic energy (B)

9

1
 of its initial kinetic energy

(C)
9

8
 of its initial kinetic energy (D)

4

1
 of its initial kinetic energy

3. A ball of mass m moving with velocity V, makes a head on elastic collision with a ball of
the same mass moving with velocity 2V towards it. Taking direction of V as positive
velocities of the two balls after collision are

(A) – V and 2V (B) 2V and – V

(C) V and – 2V (D) – 2V and V

4. Consider the following statements

Assertion (A) : In an elastic collision of two billiard balls, the total kinetic energy is
conserved during the short time of collision of the balls (i.e., when they are in contact)

Reason (R) : Energy spent against friction does not follow the law of conservation of
energy of these statements

(A) Both A and R are true and the R is a correct explanation of A

(B) Both A and R are true but the R is not a correct explanation of the A

(C) A is true but the R is false

(D) Both A and R are false

5. A big ball of mass M, moving with velocity u strikes a small ball of mass m, which is at
rest. Finally small ball attains velocity u and big ball v. Then what is the value of v

(A)
M m

u
M m




(B)
m

u
M m

(C)
2m

u
M m

(D)
M

u
M m

6. A car of mass 400 kg and travelling at 72 kmph crashes into a truck of mass 4000 kg and
travelling at 9 kmph, in the same direction. The car bounces back at a speed of 18 kmph.
The speed of the truck after the impact is

(A) 9 kmph (B) 18 kmph

(C) 27 kmph (D) 36 kmph



7. A smooth sphere of mass M moving with velocity u directly collides elastically with another
sphere of mass m at rest. After collision their final velocities are V and v respectively. The
value of v is

(A)
2uM

m
(B)

2um

M

(C)
2u

m
1

M


(D)
2u

M
1

m


7. A sphere of mass 0.1 kg is attached to a cord of 1m length. Starting from the height of its
point of suspension this sphere hits a block of same mass at rest on a frictionless table, If
the impact is elastic, then the kinetic energy of the block after the collision is

(A) 1 J (B) 10 J

(C) 0.1 J (D) 0.5 J

8. A moving body with a mass m
1
 strikes a stationary body of mass m

2
. The masses m

1
 and

m
2
 should be in the ratio 

1

2

m

m  so as to decrease the velocity of the first body 1.5 times

assuming a perfectly elastic impact. Then the ratio  is

(A) 1/ 25 (B) 1/5

(C) 5 (D) 25

9. A moving mass of 8 kg collides elastically with a stationary mass of 2 kg. If E be the initial
kinetic energy of the mass, the kinetic energy left with it after collision will be

(A) 0.80 E (B) 0.64 E

(C) 0.36 E (D) 0.08 E

10. A neutron travelling with a velocity v and K.E. E collides perfectly elastically head on with
the nucleus of an atom of mass number A at rest. The fraction of total energy retained by
neutron is

(A)
2

A 1

A 1

 
  

(B)
2

A 1

A 1

 
  

(C)
2

A 1

A

 
 
 

(D)
2

A 1

A

 
 
 

11. Which one of the following statement does not hold well  when two balls of masses m
1
 and

m
2
 undergo elastic collision

(A) When m
1
 < m

2
 and  at rest, there will be maximum transfer of momentum

(B) When  and m
2
 at rest, after collision the ball of mass m

2
 moves with four times the

velocity of m
1

(C) When  and  at rest, there will be maximum transfer of kinetic energy

(D) When collision is oblique and  at rest with  after collision the balls move in opposite
directions



12. A ball moving with velocity of 9 m/s collides with another similar stationary ball. After the
collision both the balls move in directions making an angle of o30  with the initial direction.
After the collision their speed will be

(A) 2.6 m/s (B) 5.2 m/s

(C) 0.52 m/s (D) 52 m/s

13. A ball B
1
 of mass M moving northwards with velocity v collides elastically with another ball

B
2
 of same mass but moving eastwards with the same velocity v. Which of the following

statements will be true

(A)  Comes to rest but  moves with velocity

(B)  Moves with velocity  but  comes to rest

(C) Both move with velocity  in north east direction

(D)  Moves eastwards and  moves north wards

14. A body of mass kg40  having velocity 4 m/s collides with another body of mass 60 kg
having velocity 2 m/s. If the collision is inelastic, then loss in kinetic energy will be

(A) 440 J (B) 392 J

(C) 48 J (D) 144 J

15. One sphere collides with another sphere of same mass at rest inelastically. If the value of

coefficient of restitution is 
2

1
, the ratio of their speeds after collision shall be

(A) 1 : 2 (B) 2 : 1

(C) 1 : 3 (D) 3 : 1

16. The ratio of masses of two balls is 2 : 1 and before collision the ratio of their velocities is 1 :
2 in mutually opposite direction. After collision each ball moves in an opposite direction to
its initial direction. If e = (5/6), the ratio of speed of each ball  before and after collision
would be

(A) (5/6) times

(B) Equal

(C) Not related

(D) Double for the first ball and half for the second ball

17. The change of momentum in each ball of mass 60 gm, moving in opposite directions with
speeds 4 m/s collide and rebound with the same speed, is

(A) 0.98 kg–m/s (B) 0.73 kg–m/s

(C) 0.48 kg–m/s (D) 0.22 kg–m/s

18. A body falling from a height of 20m rebounds from hard floor. If it loses 20% energy in the
impact, then coefficient of restitution is

(A) 0.89 (B) 0.56

(C) 0.23 (D) 0.18



 19. A rubber ball is dropped from a height of 5 m on a planet where the acceleration due to
gravity is not known. On bouncing, it rises to 1.8 m. The ball loses its velocity on bouncing
by a factor of

(A) 16/25 (B) 2/5

(C) 3/5 (D) 9/25

20. Which of the following is not a perfectly inelastic collision

(A) Striking of two glass balls (B) A bullet striking a bag of sand

(C) An electron captured by a proton (D) A man jumping onto a moving cart

21. A metal ball of mass 2 kg moving with a velocity of 36 km/h has an head-on collision with a
stationary ball of mass 3 kg. If after the collision, the two balls move together, the loss in
kinetic energy due to collision is

(A) 40 J (B) 60 J

(C) 100 J (D) 140 J

22. A mass of 20 kg moving with a speed of 10 m/s collides with another stationary mass of 5
kg. As a result of the collision, the two masses stick together. The kinetic energy of the
composite mass will be

(A) 600 J (B) 800 J

(C) 1000 J (D) 1200 J

23. A neutron having mass of kg271067.1   and moving at 108 m/s collides with a deuteron at

rest and sticks to it. If the mass of the deuteron is 3.34 × 10–27; kg the speed of the
combination is

(A) 2.56 × 103 m/s (B) 2.98 × 105 m/s

(C) 3.33 × 107 m/s (D) 5.01 × 109 m/s



 Important Competition Tips

1. The area under the force-displacement graph is equal to the work done.

2. Work done by a centripetal force is always zero.

3. Energy is a promise of work to be done in future. It is the stored ability to do work.

4. When work is done on a body, its kinetic or potential energy increases.

5. When the work is done by the body, its potential or kinetic energy decreases.

6. According to the work energy theorem, the work done is equal to the change in energy. That is EW  .

7. Potential energy of a system increases when a conservative force does work on it.

8. The kinetic energy of a body is always positive.

9. When the momentum of a body increases by a factor n, then its kinetic energy is increased by factor n2.

10. The total energy (including mass energy) of the universe remains constant.

11. One form of energy can be changed into other form according to the law of conservation of energy. That is
amount of energy lost of one form should be equal to energy or energies produced of other forms.

12. Kinetic energy can change into potential energy and vice versa.

When a body falls, potential energy is converted into kinetic energy.

13. Work done by conservative forces is indepeudeul of the path followed but depends only on initial and final
position.

e.g: gravitational and electric field.

14. Work done by non - conservative force is path dependent  e.g: friction, viscose force

15.
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  is called coefficient of restitution. Its value is 1 for elastic collisions. It is less than 1 for inelastic

collisions and zero for perfectly inelastic collision.

16. During collision, velocity of the colliding bodies changes.

17. Linear momentum is conserved in all types of collisions.

18. Perfectly elastic collision is a rare physical phenomenon.

19. Collisions between two ivory or steel or glass balls are nearly elastic.

20. The force of interaction in an inelastic collision is non-conservative in nature.

21. In inelastic collision, the kinetic energy is converted into heat energy, sound energy, light energy etc.

22. In head on collisions, the colliding bodies move along the same straight line before and after collision.

23. Head on collisions are also called one dimensional collisions.

24. In the oblique collisions the colliding bodies move at certain angles before and/or after the collisions.

25. The oblique collisions are two dimensional collisions.

26. When a heavy body collides head-on elastically with a lighter body, then the lighter body begins to move
with a velocity nearly  double the velocity of the heavier body.

27. When a light body collides with a heavy body, the lighter body returns almost with the same speed.

28. If a light and a heavy body have equal momenta, then lighter body has greater kinetic energy.



29. Suppose, a body is dropped form a height h
0
 and it strikes the ground with velocity v

0
. After the (inelastic)

collision let it rise to a height h
1
. If v

1
 be the velocity with which the body rebounds, then

   
     

   

1/ 2 1/ 2

1 1 1

0 0 0

v 2gh h
e

v 2gh h

30. If after n collisions with the ground, the velocity is v
n
 and the height to which it rises be h

n
, then

 
   

 

1/ 2

n n n

0 0

v h
e

v h

31. qcos. vFvFP 


 where v
  is the velocity of the body and q  is the angle between F


 and v

32. Area under the vF   graph is equal to the power dissipated.

33. Power dissipated by a conservative force (gravitation, electric force etc.) does not depend on the path

followed. It depends on the initial and final positions of the body. That is 0 dP .

34. Power dissipated against friction depends on the path followed. That is 0 dP .

35. Power is also measured in horse power (hp). It is the fps unit of power. 1 hp = 746 W.

36. An engine pulls a train of mass m with constant velocity. If the rails are on a plane surface and there is no
friction, the power dissipated by the engine is zero.

37. In the above case if the coefficient of friction for the rail is  , the power of the engine is mgvP  .

38. In the above case if the engine pulls on a smooth track on an inclined plane (inclination q ), then its power

vmgP )sin( q .

39. In the above case if the engine pulls upwards on a rough inclined plane having coefficient of friction  ,

then power of the engine is vmgP )sincos( qq  .

40. If the engine pulls down on the inclined plane then power of the engine is vmgP )sincos( qq  .


